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The Decision-Making Properties of Discrete Multiple

Exponential Bidirectional Associative Memories
Chua-Chin Wang and Jyh-Ping Lee

Abstract— A method for modeling the learning of belief com-
bination in evidential reasoning using a neural network is pre-
sented. A centralized network composed of multiple exponential
bidirectional associative memories (eBAM’s) sharing a single
output array of neurens is proposed to process the uncertainty
management of many pieces of evidence simultaneously. The
stability of the proposed multiple e BAM network is proved. The
sufficient condition to recall a stored pattern pair is discussed.
Most important of all, a majority rule of decision making in
presentation of multiple evidence is also found by the study of
signal-noise-ratio of multiple eBAM network. A guaranteed stable
state condition, i.e., the condition for the fastest recall of a pattern
pair, is also studied. The result is coherent with the intuition of
reasoning.

1. INTRODUCTION

EURAL networks have been drawing increasing interest
as powerful tools to solve different tasks of artificial
intelligence [2], [3], {12]. An associative memory is one type
of neural network which essentially is a single functional layer
or slab that associates one set of vectors with another set of
vectors. Kosko [6] proposed a two-level nonlinear network,
bidirectional associative memory (BAM), which extends a
one-directional process to a two-directional process. Jeng [5]
and Wang [13], respectively, then generalized the concept of
storing information in the exponential BAM (eBAM).
Among the problems of evidential reasoning, conflicts
caused by sequential programming and partial dependency
are pretty hard to be fully resolved [8], [10]. The basic reason
is all of the traditional methods for evidential reasoning are
developed for two pieces of evidence. Thus, when there are
more than two pieces of evidence, conflicts will happen if
the combination orders are different [11]. Wang et al. pointed
out the importance of simultaneously processing many pieces
of evidence [10], and he further proposed a method using
multiple BAM structure to handle the demand of combining
many evidence at the same time [12}. Because the relationship
of evidence and the hypothesis is always referred to be an
IF-and-THEN relationship. Hence, this IF-and-THEN format
can be easily transformed into numbers which can be stored in
memories, more specifically, associative memories. If people
intend to evaluate the degree of a piece of evidence supporting
a hypothesis, they simply present the evidence to their memory
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to recall stored information. If there are more than a piece of
evidence, then present all of the evidence and see the result
of their common output. Since the more evidence support
one hypothesis, the result should be drawn closer to this
hypothesis. Due to the inherently poor capacity of BAM [5],
[13], however, obviously the multiple BAM network would
be limited to a foreseeable degree of processing capability. We
propose a multiple eBAM network to increase the processing
capability of reasoning many evidence. We also discuss the
majority rule of decision making for handling many evidence
at the same time. The majority rule means that if more than
half of the presented evidence support one hypothesis, the
result of the belief combination of all of the evidence must
be inclined toward this hypothesis. This rule is intuitively in
accordance with the human reasoning.

In this paper, we adopt the exponential form and combine it
with the muitiple BAM structure to enhance the signal-noise-
ratio (SNR) of the entire network and, consequently, increase
the capacity. We also prove the stability of the multiple e BAM
network. A majority factor (k) is determined to indicate what
the portion of the total amount of eBAM is necessary to reach
the dominant hypothesis. The guaranteed stable state condition
of pattern pairs, or the fastest recall condition of pattern pairs,
is studied. The simulation result is much more appealing than
the previous works.

1. FRAMEWORK OF MULTIPLE
EXPONENTIAL BAM’S NETWORK

A. Evolution Equations

As shown in Fig. 1, the multi-eBAM network is constructed
with L single eBAM’s which share a common output array of
neurons. In each clock, the input vectors are presented at the
input array of neurons, respectively.

Suppose we are given N training sample pairs to the gth
eBAM of the network, which are

{(Aq1,B1),(Ag2,B2),- -+, (Agn. Bn)} (D
where
Aqi = (aqzla Qgi2, " aqin)
B; = (bi1,bia, -+, bip).

Let X; and Y; be the bipolar mode of the training pattern
pairs, A,; and B;, respectively. That is, X € {—1,1}" and
Y; € {-1,1}?. Thus, we use the following evolution equations
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Fig. 1. The configuration of a multi-eBAM neural network.

in the recall process of the multi-eBAM network
. L N Cuie X
Y = {1 if Yoy Yoin pikb e ¥ >0
= . N ;-
=1 if 30, ey yixb¥ X <0
Tak = L,
gk = -1,

it YN b’V >0
if Yoo TV <0

where b is a positive number, b > 1 “.” represents the inner

product operator, x4, and z4 are the kth bits of X, and

the Xg;, respectively, and yi and y; are for Y and the Y;,

respectively.

€3

B. Energy function and Stability

Since every stored pattern pair should produce a local
minimum on the energy surface [13], the energy function is
intuitively defined as

E(X.Y) =

N N
D > oY, 3)
=1 1=1

Thus, the multi-eBAM network’s overall energy function is
defined as

E=Y E(X,Y)

q

L
=3 e X ), @

N
=1

q=1i=
Assume E(X ;, Y) is the energy of next state in which Y’
stays the same as in the previous state, and all of the other
eBAM's stay at the same state as before. Hence, AE,, =
- N pXe X (= SN, b¥XeeXa). Assume the ith pair is
the target of the recall process for the gth eBAM. Let dg;
be the Hamming distance between X, and X, dqm the
Hamming distance between the X, ; and X;. Hence the AE,,
can be modified to be

AE,, = - Zlog (b"2dss) 4 Zlog (b7 2da=i)
i=1 =1
N n
= Z Z(‘qu - -qu)flf'qib (5)
i=1 k=1
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Note that log is used, which is a monotonic function. From
the recall process shown by (3) and (5), the AE,, < 0 is
ensured. A similar result was also given in (5) of Jeng er
al. [5]. Therefore, according to Jeng’s conclusion, (3) makes
(:vq,c Zqk)Zqik always nonnegative such that AE. <0,and

Tq —

AE,, <0= Zlog (b 2es) < — Zlogb(b” g2
i= 1
/ N
bew i< — Zb
= AEquO.

Obviously, it also holds for the other case E’(Xq,Y’) <
E(X,,Y) if the pair is heading for a stored pair, (X;,Y;).
Since the E(X,,Y) is bounded by — N (b"+b7) < E(X,Y) <
—N(™™ + b7P) for all X,’s and Y, the energy of the
exponential BAM will converge to a stable local minimum.

C. Sufficient Conditions to Recall a Stored Pattern Pair

The requirement for recalling a pair was suggested by
Kosko [6], stating that a pattern pair must have the local
minimal energy. As to a single eBAM, suppose the pattern
pair (X,;,Y;), i = 1,2,---, N are the stored pairs. Let the
Hamming distance between X and X,; be one, which denotes
the distance from the closest pattern pairs. Thus, we conclude
the criteria ensured recall are

_quz‘X - bYrYz > _quZ'XQL —

—bn2 > —pn,

pYiYi

It must be true. We can make sure that the eBAM must
be guaranteed to have the correct recall according to Kosko’s
criteria.

D. A Majority Rule for the Multi-eBAM Network

1) The Majority Rule of a Special Case: According to the
discussion in the previous sections, every single eEBAM tends
to store their own pattern pairs in the local minimums of
their network, respectively. Assume there are L single e BAM
consisting of a multiple eBAM network, and these eBAM’s
share a single output array of processing units. If these
individual eBAM’s are activated by respective input patterns
and they do not “agree” to have the same conclusion, i.e., the
same output pattern, what will be the final result of the whole
network? This problem is like a reasoning mechanism which
takes many evidence into consideration at the same time to
reach an optimal estimation of the hypothesis.

Hence, we formulate the entire problem as follows: Given a
multi-eBAM network composed of L single eBAM’s, what
is the minimal majority factor k, k& € [0,1], to make kL
eBAM’s, which are vowing a common output pattern and the
other eBAM’s are not, dominate the common output? In other
words, we are interested in exploring the lower bound of the
kL which can force the output pattern to be their common
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output pattern. Note that in fact the kL denotes an integer,
Ceiling(kL), which is the smallest integer larger than kL. In
the following text, we simply use the kL without any loss of
robustness.

Before we discuss the lower bound of kKL, we have to
study an extreme case in which a upper bound of kL will be
derived. Assume the pattern pairs, (X11,Y,),(Xo21,Y,), -+,
(Xkr1,Y:), are encoded in 1st to kLth eBAM’s, respectively,
and pattern pairs, (X(xr4+1)1,Ys), (X1, Ys), are stored in
(kL + 1)th to Lth eBAM’s, respectively. Thus, when input
patterns, X117, Xo1, -+, X1, are presented at the input array
of each individual eBAM, what would be the result of output?

Suppose the Y, is the output pattern that we are looking
for, i.e., it is deemed as the signal. By the SNR approach [1],
[5], [13] and the evolution equations (3), we are aware of the
following facts

kL N

yijquz-Xq = Z Zyi]‘bx‘“‘x‘"

q=1 =1

L N
C3 S

q=kL+1 i=1

kL
= Z(ym'b" + Zyijbx'?i'xqr)
g=1

iEr

L
+ Z (y.ejbn + Z yijb‘\'qr-\'qs)

g=kL+1 1#£s

2

L N
q=1

=1

where X, represents the input pattern presented to the gth
eBAM. The X, can be shown in detail as follows

Xiryoo s Xkrr O Ist, - - -, kLtheBAM,
X = respectively
7Y X(krt1yr - Xpr o (kL + L)th,---, LtheBAM,
respectively.

By our previous assumptions, only the first term in the above
equation is the signal we wish to observe at the output array of
processing units. As for the rest terms, they are the undesired
noise. Therefore, we can derive the signal power as

kL

S = Z bZn
g=1

= kLb*"

and the largest power of noise, which means all of the rest
(1 — k)L eBAM’s support another output pattern Y, is

N = (1 - k)L™ + kL(N — 1)p>" =2
+ (1 = k)L(N = 1)p2(>=2)
= (1= k)Lb™™ + L(N - 1)p*("=2),
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In the above noise power equation, we assume not only all
of the rest (1—k)L eBAM’s support another output pattern, but
also this pattern is the closest pattern to the desired one. If the
desired output is intended to be recalled, then the sufficient
condition is the S > N according to the SNR approach.
Thus we can conclude the lower bonds for this definite recall
condition of k is

ELb*™ > (1 — k)Lb*" + L(N — 1)p*("~2) ©6)
1 N-1

L 7

B>t o @

Note that this lower bound of k& means any & bigger than
this threshold can force the output pattern to be the common
desired output pattern of the kL eBAM’s in the network. If the
bound of (7) is larger than one, however, it means even all of
the eBAM’s support one output pattern, there is no guarantee
to recall this common pattern.

2) The Majority Rule of the General Case: In the above
extreme case, we assume all of the rest (1 — k)L eBAM’s
support another same output pattern which is only one bit
Hamming distance away from the desired pattern. Generally
speaking, however, most of the reasoning problems will not
be this special. We will consider a general case in which kL
eBAM’s still support a common output pattern, but the rest
(1 — k)L eBAM’s do not support the same output pattern,
ie., they individually support their own output patterns,
respectively. Basing upon this assumption, then we can derive
the following results

kL N

L N
Z Z yi]_ququq — Z Z yijqul'XqT

g=11i=1 g=1i=1

L N
N S e
g=kL+1 1=1
kL

=) (yrb™ + Z yijbNeXer)
i#r

L
+ Z (ysjbn‘FZyi)-bxm‘-\qs)
gq=kL+1 iZs
= kL -y + (L= K)L - go,b"

kL
STt

q=1 i#r

L
FY S

g=kL+1 i#s

q=1

®)

where X, represents the input pattern presented to the gth
eBAM. The X, can be shown in detail as follows

Xty Xgrr  to 1st,--- kLtheBAM,
X = respectively
7 ) Xkratyrs > Xpr to (kL +1)th,-- -, LtheBAM,
respectively.

The third and fourth terms of (8) can be analyzed by the
SNR approach proposed by Wang [13]. The third and fourth
terms are actually sums of kL(N — 1) and (1 — k)L(N — 1)
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independent identically distributed random variables, respec-
tively. Therefore, the variances of the third and fourth terms
are kL(N — 1) and (1 — k)L(N — 1) times the variance of a
single random variable. Let

vy = gy b Ko
vy = yg;bei X
UN = yijXqi'Xq'

Since all of the v;’s have the same property, we select vy
as the sample. It is trivial to derive the following probability
functions for vy

o 1,1 e
Pr(v; = b""2"%) = (5)" 7" ¢! ©

Pr(v; = —b"2%) = (St ezt (10)

2

where the k is the Hamming distance between X, and X;.
The mean of the noise term is obviously zero. Then the
variance can be derived as

n—1
E[v%} -9 Z b2(n72k—2)(%)n—10’7:—1
k=0

m
1
=2 Z b2(m_2k_1)(§)m(),'c”, where m=n-—1

k=0
1 m
= 2(5)%2(’“—1) S hrm-hop
k=0
1
— 2(§)mb_2(b2 + b—2)m
1 (bz + b—?)n—l

_ Tyn—1

B 2(2) b2

L B b
e TR

Hence, the power of the third and fourth terms are, respec-
tively,

N3 = E(v}) - kL(N - 1)

Ni=E@?)-(1-k)L(N ~1).

The SNR of this case can be further derived
kL - b2
(1 — k)L -b?" + N3+ N,
k

= . (11
A= h+ (V-2 e Y

SNR =

If the common desired output pattern must be recalled, then
the sufficient condition is the SNR must be greater than one.
Thus, we can find the lower bound of &

SNR>1

k> (1 _ k) + 2—n+1 , 2(N - 1)(1 + b_4)n_1

b
2(N - 1)(1 + b~ 4!
=(1-k+ on—1p4
1
=(1-k —_—
( )+ SNR.pam
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where SNRepaM = soy—iime=ry=r
analysis [13].

Therefore, we conclude the above discussion of a majority
rule of multi-eBAM network with the following theorem

Theorem of the Majority Rule for a Multi-eBAM Network:
Given a multi-eBAM network with L single eBAM’s, kL
eBAM’s support a same common output pattern, where k£ €
[0,1). The condition for the output pattern of the network is
the same as the one supported by the kL eBAM’s is

according to Wang’s

1 1
k>

2T 3 SNRopam | (12)

If the lower bound in (12) is larger than one, then it means
that even all of the eBAM’s in the network support one output
pattern, there is no guarantee to recall this output pattern.

By the above theorem, please note because the SN Repanm
is usually very large, the lower bound of k can be simplified to
be % which complies the human intuition. That is, if more than
50% of the evidence supports a hypothesis, then the reasoning
result most likely would be the same as this hypothesis.

E. Guaranteed Stable Condition of eBAM

By the meaning of evolution equations of eBAM, (3), the
search of the desired pattern pairs is basically a back and forth
reverberation process on the energy plane, (3). Certainly, it
will take more time to correctly recall a pattern pair in this
way. Hence, we are interested in discovering the conditions
for recalling the desired pattern pair in “one shot.” That is,
we would like to discuss what the condition is to recall the
correct pattern pair in one and only one back-and forth sweep.
According to the first equation of (3)

N
Y = sgn <Z yikbx“"T>

im1
N

= sgn| b"yrk + Z yupb ¥ X7
#T

where Xr is one of the stored patterns in the eBAM. Thus,
if we wish to recall the pair in one shot, then the pattern pair
must be stored placing in a “stable state,” i.e.,

N
| b yre | =1 ) yanb™ T |
i#T

N
b" >| Zyikbx"XT | .
2T

Then, we have to know what the possible largest value of the
right-hand side of the above equation is. The right-hand side
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of the above equation can be further derived to be

N N
|> ™ ¥ | < Z | yirb™ T |

i£T i#T

N
= Z | yix | 6% X7

i£T

N
— z bX,~XT

i#T

N
<y

T
= (N -1)p"2

Hence, we can state that the guaranteed stable state condition
for the eBAM as follows.

Theorem of Guaranteed Stable State Condition of eBAM:
Given an eBAM, the condition for one shot correct recall of
any desired a pattern pair is

B2>N-1 (13)

where b is the base used in the eBAM evolution equations and
N is the number of stored pattern pairs.

Note that the above theorem is a very strict theorem in
terms of memory’s capacity. It states a condition for one
shot guaranteed recall of pattern pairs. Generally speaking,
however, we do not demand the eBAM to recall the pattern
pairs in one shot, because it will severely reduce the capacity.
Hence, we would like to enlarge the capacity by relaxing the
constraint, (13).

Lemma: Relaxation of guaranteed stable state condition by
choosing a reasonable SNR, e.g., 10, is practically feasible for
storing large amount of pattern pairs in eBAM.

b*>SNR-27""3(N - 1). (14)

For example, if b = ¢, SNR = 10,n = 16, then we can
store up to N = 89454 pattern pairs in a single eBAM.

III. SIMULATION ANALYSIS

In this section, we use some examples to illustrate the
theoretical results of the multi-eBAM networks discussed in
Section II.

Example 1: This example is used to prove the bidirectional
stability of multi-eBAM networks. As shown in Fig. 1, we set
L =3n=7p=05"b= e in a multi-eBAM network. The
training pattern pairs for the upper part of the network are as
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follows
Ajq; = (1101101)

Aj, = (0000000)

Aps = (1111111)

Ay = (0100110)

Agy = (1111111)

Agy = (1000100)

Apz = (1001101)

Ay = (1100101)

Agp = (0100011)
A3z = (0100000)
Aas = (1000001)
(1 )

A34 = (1001000
= (00101)
Bz = (11011)
B; = (11000)
By = (00010)

After the pattern pairs being transformed to the bipolar
mode, three input pattern are presented at respective eBAM’s

IL=(1101100)
I =An
= As.
The energy of the entire network according to (3) changes
as follows: Iteration 0, E = -2.38782x10% Iteration 1, E = -

2.82247 x 103 Iteration 2, E = -3.78538 x 103 Besides, the final
pattern pairs of the network are

Bfin-al =B
Aifinal = An
Asginal = A1

Asfinal = As1.
Note that the I; is not the same A;1, which is one bit away
from I;. Hence, not only does it show the stability of the
network, but also it shows the error correcting ability. In
the following, we will prove the majority rule by presenting
different combination of input patterns. If the network is given

I;=(1101100)

I, = Ay

I3 = Ass.
The second and third eBAM’s support the B, as the output
pattern, but the first eBAM prefers B;. The energy of the entire
network according to (3) changes as follows: Iteration 0, E =

-2.42522% 102 Tteration 1, E = -2.86787x103 Iteration 2, E
= -3.81306x10° The final pattern pairs of the network are

Bfina = B
Aifinal = A12
Asfinat = As2
Asfinal = Asa-
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Fig. 2. The lower bound of k with different N.

The result coincides with the prediction of majority rule, i.e.,
the final output pattern is By, because k = % is much larger
than the required minimal lower bound. Further more, if the
network is given input patterns as

L =(1101100)
I, = Ay
13=A33.

In this case, the second and third eBAM’s support Bj simul-
taneously. Then, the energy of the entire network according to
(3) changes as follows: Iteration 0, E = -2.42789x 10° Iteration
1, E = -2.87054x 103 Iteration 2, E = -3.83341x10° Besides,
the final pattern pairs of the network are

Byfinat = B3
Aifinat = Ai3
Adfinat = Ass
A3finat = Ass-

According to the above result, it is obvious when more than
half of the eEBAM’s in the network agree to support a common
output pattern, the output of the network will be this output
pattern.

Example 2: A 3-eBAM network might not be considered
to be a general case. Therefore, we construct a series of
multi-eBAM networks, L = 3 to L = 31, n p = 8, to
verify the k prediction of the majority rule. In every multi-
eBAM simulation, the number of stored pattern pairs for each
single eBAM is also varied from N = 3 to N = 99. In this
simulation, all of the pattern pairs are randomly generated. The
result is the majority rule holds in every case, even in the worse
case, L = 31, N = 99, in which the predicted k¥ = 0.515923,
and 16/31 = 0.516129 > 0.515923. The relation between k
and N is illustrated in Fig. 2, while the minimal k selected in
networks with different number of eBAM’s is shown in Fig. 3.
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Fig. 3. The minimal k in different networks.
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N

Fig. 4. The lower bound of £ in the special case.

For the sake of comparison, we also repeat the simulation
for the special case, which is also deemed as a strict case. The
minimal % in this strict case is shown in Fig. 4 in which b = e.
If the number of stored pattern pairs, IV, is larger than 55, there
is always a chance for the network to converge to the desired
common output. Because when N > 55, the k is larger than
one. According to (7), there is a chance for the network to
recall the desired common output pattern when N — 1 > b,
The comparison for the strict case and the general case is
shown in Table I

1IV. CONCLUSION

A multi-eBAM neural network has been introduced for the
belief combination in evidential reasoning. It is proved to
be bidirectionally stable, which ensures the model’s ability
to reach a local energy minimum. The sufficient conditions
for a multi-eBAM network guarantee the network to recover
a specific, predetermined pattern pair from a list of choices.
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TABLE I respective bounds for the majority factor, k, are presented.
THE MINIMAL k IN THE STRICT CASE AND THE GENERAL CASE. (b = ¢) These rules will help researchers to use and predict the result

N (number of pairs) | strict case | general case of evidential reasoning. The condition for the fastest recall in
P g the eBAM network is also discovered, which states the bound
5 0.536631 0.500650 of guaranteed stable states. This network provides the ability to
10 0.582420 0.501462 process many evidence at the same time reaching a consented
hypothesis.
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