IEEE TRANSACTIONS ON SYSTEMS, MAN, AND CYBERNETICS—PART B: CYBERNETICS, VOL. 26, NO. 5, OCTOBER 1996 733

Capacity Analysis of the Asymptotically
Stable Multi-Valued Exponential
Bidirectional Associative Memory

Chua-Chin Wang, Shiou-Ming Hwang, and Jyh-Ping Lee

Abstract— The exponential bidirectional associative ‘memory
(eBAM) has been proposed and proved to be a stable and
high capacity associative neural network. However, the intrinsic
structure and the evolution functions of this network restrict the
representation of patterns to be either bipolar or binary vectors.
We consider the promising development of multi-valued systems
and then design a multi-valued discrete e BAM (MV-eBAM). The
multi-valued eBAM has been proved be asymptotically stable
under certain constraints. Although MV-eBAM is also verified
to possess high capacity by thorough simulations, there are
important characteristics to be explored, including the absolute
lower bound of the radix, and the approximate capacity. In order
to estimate the capacity of the MV-eBAM, a modified evolution
equation is also proposed. Hence, an. analytic solution is derived.
Besides, a radix searching algorithm is presented such that the
absolute lower bound of the radix for this MV-eBAM can be
found.

I. [NTRODUCTION

INCE Kosko [10], [11], proposed the bidirectional asso-

ciative memory (BAM), many researchers have invested
efforts on exploring the network’s properties and limitations.
Due to its intrinsic architecture, the capacity of BAM is
unfortunately poor [7], [8]. Thus, researchers started to develop
different methods to enlarge the capacity of the associa-
tive memory, e.g., Wang et al. [16], Simpson [14], and Tai
et al. [15]. Among these works, it is notable that Chiueh
and Goodman [4] proposed exponential Hopfield associative
memory motivated by the MOS transistor’s exponential drain
current dependence on the gate voltage in the subthreshold
region such that the VLSI implementation of an exponential
function is feasible. Chiueh also proposed an exponential
correlation associative memory (ECAM) [5] which is an
autocorrelator utilizing the mentioned exponential function
of VLSI circuits to enlarge the correlation between stored
pattern pairs. Based upon the concept of Chiueh’s exponential
Hopfield associative memory, Jeng ef al. proposed one kind of
exponential BAM [9]. However, the energy function proposed
in [9] cannot guarantee that every stored pattern pair will have
a local minimum on the energy surface. Moreover, there is no
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capacity analysis given in [9]. Although we have estimated the
impressive capacity of an eBAM [17], the data representation
of BAM or eBAM is still limited to be either bipolar vectors
or binary vectors. We consider that the expansion of the data
range, i.e., from {~1,+1}" to {1,2,...,L}", L > 1, is also
a feasible method to enlarge the capacity. It also enlarges the
data representation. This observation leads to the multi-valued
(or called multivalued) exponential bidirectional associative
memory (MV-eBAM).

The multi-valued concept has been successfully applied in
Hopfield network for A/D conversion [19], [20]. In addition,
Chiueh et al. proposed the multivalued exponential correlation
associative memory (MV-ECAM) [6]. Though many similarity
measures were proposed in this work, the proof of convergence
of the network was not shown specifically. Besides, critical
features about this kind of network are not thoroughly ex-
plored. For example, the capacity and the bound of the radix.
The multi-valued concept also causes tremendous interest in
the digital circuit design, [3], [12], which indirectly shows
the hardware implementation of the such a neural network is
feasible. ;

In this paper, we first propose a modified measure and an
energy function for MV-ECAM and then prove the stability of
the network. The evolution equations and the energy functions
of the MV-eBAM, then, will be presented and the asymptotical
stability will be proved. Though the high capacity of MV-
eBAM is expected, the analytic form of solution is hard to
derive. We then propose modified evolution equations of MV-
eBAM such that the capacity can be estimated. The radix of the
exponential function plays an important role in this network.
We are interested in discovering the minimum of the radix
which is able to recall every stored pattern pair. This smallest
radix is called the absolute lower bound, which will be derived.
Finally, when a set of pattern pairs is given, a radix which is
small enough recall every pair in this set will be computed
basing on a gradient descent method.

II. MULTI-VALUED EXPONENTIAL BAM

Before we introduce the evolution functions and energy
functions of the multi-valued e BAM (MV-eBAM), we will
discuss the convergence of multi-valued exponential correla-
tion associative memory (MV-ECAM). Then, we will discuss
the stability and other characteristics of the MV-eBAM.

1083-4419/96$05.00 © 1996 IEEE
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Fig. 1. The staircase function (L = D = 8).

A. MV-ECAM

Although Chiueh er al. proposed a multivalued exponential
recurrent associative memory with several similarity measures
[6], they were short of a theoretical proof of the convergence
of the network. We proposed a modified similarity measure,

which consequently is the measure of the correlation of two

pattern vectors, as follows:
8= —|IX1 - Xof* @

where X1, Xp € {1,2,...,L}™. In the following text, we use
the term “digit” to represent the component of the vector.

Thus, S will be largest if X; = X,. Based on this norm

similarity measure, the evolution function and the energy
function of MV-ECAM are, respectively, established below.
Evolution Function:

e[

@

Zfil bl x—x)2

where 7, is the next state of xy, b is a positive number,
b > 1, M is the number of patterns in the MV-ECAM,
Xy 2 =1,..., M, are the stored patterns, X is the initial
vector presented to the network, xy, and z;; are the kth digits
of X and X, respectively, and H(-) is a staircase function
shown as the following equation:

1, r<1
H(z)=1<L, z>D 3)
L% -z +0.5], elsewhere
where [ = 1,2,...,L, L is the number of finite levels, and

D is the finite interval of the staircase function. The graphic
representation of the staircase function H(-) is shown in Fig. 1.
Note that if D — oo, and L — oo, then H(z) ~ =, for z > 0.
The reason why the staircase function is used is that the z in
H{(-) in (2) is not necessarily a positive integer. Hence, we
have to assign this argument to a nearest integer.

Energy Function:
M 2
E(X) ==Yy, NG
i=1

This energy function ensures each pattern pair is placed in its
own local minimum as long as the radix, b, is large enough.

Stability of MV-ECAM: Based on (4), we can derive the .
change of energy in every iteration to be negative as shown
in the following. Assume z, is the next state of zy, then

Doy, B(X) = Vo B(X) Azy
M
= [2 Z(-Tk - wik)b'“X'Xi”z -In b]
(o — o)
M .
=1Inb-2. (Z g,—lX~Xin)
, < «

M X —X |2
M peb XXl ,
. <$k _ Z’L—l k . (xk . Ik)

Efil plIX =X

M b
= —2Inb- (Z b—”X’XW)

=1

(Bt
(- k). ()

M I -x

‘According to (2), we have the following inequalities when
x}, is the next state of xy.
Case I: If

1 T b X -0 1

T — < i — <ITrp+ 3
2 Y oisy b IX =Xl 2

Z:\il iikb—\!x—xi!ﬁ
H( Z?‘flb—uxmm?

Hence, A,, E(X) = 0.

Case 2: If

then, z), = ) = = according to (2).

M @b X=Xl
= >
SM plIx=xE

L1
T 3

then z}, > . Thus, according to (5), A,, E(X) < 0.
Case 3: If

Zfilxikb"’X‘X”'Q<x 1
I )

then, z}, < x%. Thus, according to (5), A,, F(X) < 0.

Hence, the evolution function ensures the energy of the
network will be decreased in the gradient direction. Besides,
it is easy to verify that the energy defined by (4) is bounded.
Therefore, the MV-ECAM is stable.
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B. Framework of MV-eBAM

Suppose we are given M pattern pairs, which are

{(X1,Y7),(X2,Y2), ..., (Xnr, Yar)} (6)
where ;
Xi = (zi1, Tig, -+, Tin)
Y = (ya, ¥z, - - Yip)

where n is assumed to be smaller than or equal to p without
any loss of generality. Hence, the evolution equations of the
MV-eBAM are shown as

Mo =X =X
()

M b IX- X
e = H §:i]\i1$ikb_nyi_Y“2 @
TS vy e

where X and Y are input key patterns, b is a positive number,
called the radix, b > 1, H(-) is the same function as (3), zj

and z;, are the kth digits of X and the X, respectively, yi

and y;, are for Y and the Y;, respectively.

The reasons for using an exponential scheme in (7) are
to enlarge the attraction radius of every stored pattern pair
and to augment the desired pattern in the recall reverberation
process. In the evolution equations, (7), if the given input
pattern is close to the desired pattern, the weighting coefficient,
b~ I1Xi=X1*  will be close to the maximum, 1, while if the input
pattern is far from the desired one, it will approach 0. As for
the purpose of the denominator, it makes the y; and zj, to be
the centroids of all of the y;.’s and x’s, respectively.

1) Asymptotical Stability: The MV-eBAM is one kind of
BAM, bidirectional associative memory. Therefore, we can
explore its stability by studying its two phases of evolution,
ie, X - Yand Y — X.

X — Y Phase: We define an energy function similar to
that of MV-ECAM in (4)

M
Ei(X,Y) =3 |IX — X2 o~ =l ®)

=1

At the first glance, the above proposed energy function might
not show that every pattern pair is encoded in a local minimum
on the energy plane. However, it indeed can place the pattern
pairs in local minima. The reason is the second term is an
exponential term. When the radix b is sufficiently large, the
pattern pair (X, Y;) will reside in a local minimum of the
FE; surface.
Thus, we can compute the V,, F1(X,Y)

M
Ve Bu(X,Y) =23 (o — wig)b” 14

=1

— 9 (% bfnY—Yiu?)

=1

M Y -2

M 4 y-v;|?
Sin, bl dl

735

The change of F; due to a digit change, therefore, can be
derived to be

AmkEl(X,Y) = thEl(X, Y) ’ Amk
M

-9 Zb—llY—YiiP)
(i:l

M Y =Y: |2

M bV =Yl
X (xk - ZZ=1\1/I:L. k_”y_y,Hz

Zizlb ‘

(o =)

M
-9 (Z b‘”Y‘Yi”2>
=1

Lok, wab VY
\ e e

(2 - an). ©

According to (7), we have the following inequalities when
) is the next state of xy.

Case 1: If
Zf‘il zyb 1Y Yl 1

<Tp+ 5
SM pelv-vip T2

T~ = <

1
2
then, z}, = xy according to (7). Thus, A,, F4(X,Y) =0.
Case 2: It
Zz‘l\; zab= VY4l S 1

SV v viE = TR

then, z}, > z;. Thus, according to (9), A,, F1(X,Y) < 0.
Case 3: If

M 2
Mo Y -Y® 1
Ez:}l\/f‘z. k ~ < Tp — —
M by -vil

2

then, @}, < xj. Thus, according to (9), A, F1(X,Y) <O0.

The X — Y phase of the network is proved to be
asymptotically stable.

Y — X Phase: By the similar derivation as shown in X —
Y phase, we also can prove that Y — X is asymptotically
stable. The only difference is the definition of the energy
function in this phase. The energy function of this phase is
similar to (8) ‘

M
Ea(X,¥) = Y_|IY = ¥i|f" oo,
=1

(10)

Since the procedure of the derivation is very much the same
as that of the X — Y phase. There is no need to repeat the
lengthy discussion.

Note that the energy functions defined in (8) and (10) are
both bounded. In short, the X — Y phase always drags
down the F1(X,Y), while the Y — X phase always reduce
the E5(X,Y). The evolution will be terminated when both
E1(X,Y) and Ea(X,Y) reach their respective local minima
at which the pattern pairs are stored.
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2) Absolute Lower Bound of the Radix: The- definition of
the absolute lower bound of the radix can be stated as the
smallest radix which is able to recall every unique stored
pattern pair. In other words, we are interested in discovering
what is the minimal radix that is good enough to recall
every pattern pair as long as these stored pairs are one-to-one
associated. Therefore, we have to consider the worst case
in order to derive this minimal radix, which is called the
absolute lower bound.

Assume all of the stored pattern pairs are unique, and the
given input pattern is the same as either X vector or Y vector
of one of the pairs. Thus, according to (7), we can take one
of the evolution equations as an illustration

yr=H it yab 1%~ XI
’ M p-lIx-xIP
ol v X=X S b I X
b=l XA =X Zf\ih p—llxi =X
P + Zf‘ih Ynp - b IX X2
1+ Zi\ih plixi— x|
n Zf‘\ih(yz‘k — ypg) - b IX X
1+ Y0, b IX=X1
Ynk (1 + 3o, bl XJF)
1+ }:i#h p-lix:— X2
o Dt vin = v b—llxi—w)
1+ Efih p—lIxi—x

M . 2
: ! ik — yng) - b IX=Xl
— |y + Zlih(yk Myhk) i an
1+ /‘#h p—lII X=X

i

1l

where the first term in the H(-), i.e., yn, is the signal, and
the second term is deemed as the noise. In order not to make
the y jump to either of yrr’s adjacent levels, the sufficient
condition based on (3) and Fig. 1 is

E < Zi;éh(yik — Yhk) - p— X=X .
2 1+ E#h p— X —XI?

1
—. 12
7 (12)
That is, the noise must be bounded. Therefore, the discussion
can be divided into two parts. The right part and the left part of

the inequality shown in (12) can be simplified, respectively,
to the following inequalities:

Z [2(yie — yni) — 1] - plIlXa=XI17 o
i#h
Z 2(yne — yir) — 1] X=X g
i#h

In summary, the above two inequalities are rewritten as the
following equation:

Z [Qthk: — yzkl — 1] . b—HXq;—XHZ <1
i#h

(13)

We consider the distribution under the worst condition,
|ynk = vir| = L — 1. Then, (13) is again to be restated as

ST j2L 3] b7 IXIE <,
i£h

(14)

The worst case for the pairs distribution happens when those
Xi, @ # h, are located as close to X}, as possible. This will
produce the largest noise to the signal, y5. For instance, if
n = p = 2, the worst condition to X} is shown in Fig. 2.
Assume ? is the largest number of different digits between any
Yi, © # h and Y}, in the worst case of pattern pairs distribution.
m, is the largest number of patterns satisfying || X —X;[|? = »,
where 7 is square of the distance between X and X;. Then,
the worst case of the pattern pairs distribution must be

(15)

t—1 t
SNom < M-1<Y m,.
Cor=1 r=1

Therefore, according to (15), (14) can be rewritten to be the
following equation:

< 1.

: t—1 -1 ‘
(2L - 3) {Zm b+ <M— 1-— Zm) bt
r=1 r=1 (]6)

Unfortunately, the solution of this result is not an analytical
form. However, if n and L are given, the minimal b can still be
derived numerically. Some numerical analysis will be required
in order to solve this Jower bound.

3) Capacity Analysis: Following the same scenario as the
previous subsection, we consider the worst distribution of the
pattern pairs in order to assess the capacity -of MV-eBAM.
Then according to (14), the capacity can be derived when the
equality holds. Therefore,

<2L 3 Zm’“ )

This result also shows that it cannot be expressed as a closed
form solution. Hence, some numerical analysis is also requ1red
in order to solve the above inequality.

4) Radix Searching Algorithm: We are also interested in a
problem: given a limited set of pattern pairs in which every
pair is uniquely associated. What is the smallest radix able
to recall all of the pairs in the set? Obviously this radix
must be no larger than the lower bound of the radix which
is able to recall every unique paur in the worst case of pattern
distribution.

As we mentioned in the discussion for the asymptotical
stability, the sufficient condition for a stored pattern pair to
be recalled correctly is it has to be encoded in respective local
minima of E; and Es. This observation leads to the following
criterion for the stability of the MV-eBAM.

t—1

-bt+Zmr+1.

r=1

a7
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Fig. 2. The worst distribution of MV-eBAM (dimension = 2).

For a pattern pair (X4, Y3), the sufficient conditions to be
recalled correctly are

M p Y=Yl
E'—l $zkb If 3 1
_-< — == — =1,...
2 ST ISV T g Vk=len
1 Y b IX X
- < — L=l - Vk=1,...,p.
3 ST S i 2 P

(18)

Hence, a binary searching method can be adopted to itera-

tively compute the smallest radix which is still large enough to

recall all of the given pattern pairs. A cost function is defined
as follows:

M P
J(b) = z: (Z Opk + Z Bhk)
he=1 k=1

19

)
)

The cost function possesses several nice features to be a
good measure of the radix searching.
1) If (18) is satisfied, then J(b) = 0. That is, the good
radix, b, is found.

k=1

where

Qp = |~’l»’hk - w/hkl =

M Y~V |12
H’ Z’i—lxikb ”Y1 Yh”

Thk — =
SM blYi-Yal?

Mo p=lI X=Xl
Yne — H (2’:1 yinb

Mo P X —Xg|?
Yisqb X —Xrll

Bri = |yrk — via| =

2) If either of the inequalities shown in (18) is not satisfied,
then J(b) > 0.

3) If b increases, J(b) decreases.

Considering the computation complexity, we will use the
binary search method to find the minimal radix instead of
using gradient descent method. The radix searching algorithm
is summarized below.

Step 1. Set b = 1.0 and b, = 2.0, where b; indicate the
lower bound of the searching interval, and b,, means
the upper bound. Substitute b,, into (19) with the
variable b. If J(b) > 0, set by = by, by = 2 by,
and repeat the step until J(b,) = 0.

Suppose err denotes a predetermined tolerable er-
ror. Thus, if b, — b > err, by, = %(bu + b). If
J(bm) # 0, by = by; else, bu = bm.

Repeat Step 2 until the difference between b, and
b; is smaller than a predetermined error. Finally, by,
is the radix to be used.

Step 2.

Step 3.

C. Modified MV-eBAM

Although the MV-eBAM shown in Section II-B possesses
amazing recall ability, the capacity still remains unclear be-
cause the analytic solution of (17) is hard to derived. Hence,
we proposed a modified MV-eBAM with different evolution



738 IEEE TRANSACTIONS ON SYSTEMS, MAN, AND CYBERNETICS—PART B: CYBERNETICS, VOL. 26, NO. 5, OCTOBER 1996

Fig. 3.
L).

The worst distribution of modified MV-eBAM (without the limit of

equations as follows:

Z%l yikb_Z?ZI s =31

= H n
S NS DN

"
» (20
Z]»\fl xikb_zjzl lvi5=vs] ‘

T = H
Z’f‘il b*zj:l lyiz—y;]

The major difference between the evolution equations of
MV-eBAM, as shown in (7), and those of modified MV-
eBAM, as shown in (20) is the measure of the distance of
the retrieval pattern and the stored patterns. That is, the MV-
eBAM employs a measure of spatial distance of two vectors,
ie., || X; — X||°, while the modified MV-eBAM uses the
measure of Manhattan distance of the vectors, i.e., E;”: 1z —
x|. The pattern pair distribution in the worst case of the former
is like concentric circles as shown in Fig. 2. In contrast, the
latter will arrange the pattern pairs in a family of rhombuses,
as shown in Fig. 3. Comparing these two structures, we can
easily find out that the number of patterns of the modified
MV-eBAM in the worst case distribution of pattern pairs is
more than that of MV-eBAM when given the same dimension
and number of levels. Thus, the capacity of the modified MV-
eBAM can provide us the bound of the MV-eBAM in an
analytic form solution. Besides, since the exponent part of the
modified MV-eBAM is smaller than that of the MV-eBAM,
the modified MV-eBAM unavoidably needs a bigger radix.

1) Capacity of Modified MV-eBAM: The key reason that
the analytic solution of the capacity of MV-eBAM cannot be
found is the m,. terms in (15) and (16) cannot be expressed in
a general form when the exponent of the evolution equations
is [|X; — X||*. For the sake of clarity, we denote the total
amount of the difference of the digits of the retrieval pattern
and the stored patterns with d for the modified MV-eBAM.

Using the similar derivation shown in subsections B-2 and B-3
of Section II, (12)—(17), we ‘can find a my for the modified
MV-eBAM which is similar to the m,. for the MV-eBAM.
Since my is not only a function of d, the difference of number
of digits of the retrieval pattern and the stored patterns, but also
a function of of n, the dimension of the pattern vector. Hence
we define m(n, d) as the largest number of patterns satisfying
Y5y |wi; — ;] = d. where z;; and x; is the jth component
of X; and X, respectively, and X ‘€ {1,2,...,L}*. In
order to precisely compute the capacity of the modified MV-
eBAM, again we have to consider the worst case of pattern
distribution, as shown in Fig. 3. Thus, the equation of the
worst case distribution is the same as (15)

s—1 s

Zm(md) <M-1 <Zm(n,d)

d=1 d=1

2D

. where M is the capacity, the number of pattern pairs to be

stored, and s is assumed to be the largest number of different
digits between the retrieval pattern and the stored patterns for
the modified MV-eBAM. '

Obviously, the m(n,d) is also affected by the number of
levels, i.e., L. Hence, we have to consider two situations: L is
sufficiently large, which won’t be a factor to calculate m(n, d);
and L is not sufficiently large.

Case I — Large L: Assume L is large enough so that it
won’t restrict the number of the pattern vectors in the worst
case distribution. We have to define some terms in order to
solve the m(n,d).

SN(0): the number ‘of solutions of the equation, d; + ds +
-+ +dp = d, where d;’s are nonnegative integers which are
the distance of z; to the corresponding z;;, for j = 1,...,n.

SZ(0): the number of solutions of the equation, |d; |+ |dg|+
-+ |dn| = d, where d;’s are integers. In fact, the SZ(0) is
the same as m(n,d).

SN(k): the number of solutions of the equation, d; + dy +
«++dy, = d, where d;’s are nonnegative integers, and at least
k of the d;’s are 0’s. ‘

SZ(k): the number of solutions of the equation, |d; |+ |da|+
-+ |dn| = d, where d;’s are integers, and at least k of the
d;’s are 0s. '

According to the definition of SN (0), the solution is the
same as randomly allocate d 1’s in 7 positions. In other words,
it is also the same as to insert (n — 1) dividers into d 1’s. That
is,

SN(0) = gdtn=1t = gdtn-1, (22)

As for the SN(k), it is defined that there are at least k& 0’s
in the z;’s of the solution. Hence,

SN(k) = Cp . ¢dtin=h=1 (23)

Considering the relation between SZ(0) and SN(0), we
find that the z; can be either positive or negative. Thus, SZ(0)
should be 2™ - SN(0). However, since +0 = —0 = 0, we
have to delete the these solutions which are counted twice. In
other words, SZ(0) is the same as 2" - SN(0) subtracts those
solutions containing at least one 0

SZ(0) = 2" - SN(0) — SZ(1). (24)
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By the same observation 300 400 500 600 800 1000
SZ(k) = on—k SN (k) - SZ(k+1). (25) Fig. 7. Summary of MV-eBAM simulations (n = L = 8).
. . . where
Assume X}, is the pattern located at the center of Fig. 3,1.e., 1
the pattern supposed to b'C recalled. Thcn SZ(n) is 0, since m(n, )|z, <o = Z m(n, d)|s, =;
X}, is assumed to be unique, and this solution has at most jm—d
n — 1 0’s. Hence, we can conclude the following equations: 1
B - = mn-1,d-|j)
SZ(0)=2"-SN(0)—2 -SN(1) =4
+2"72.8N(2)...2 - SN(n - 1) -1
n—1 :Zm(n—l,k)
— Z(_l)k . 2n—k . Clrcz . C;L-"H-d—l o
k=0 1
=m(n,d). = Z m(n, d)|e, =;
. '
Another way to compute m(n,d) and solve it recursively = m(n,d)|z,>0
is shown as follows: and

m(n,d) = m(n,d)

zn,<0 m(n, d) |zn=0 +m(n7 d)lacn>0

m(n,d)|e,=0 = m(n —1,d).
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TABLE 1
m(n,d):n =1,...,8, d =1,....8
n d=1 a=2 d=3 d=4 d= d= d= d=8
1 2 2 2 2 2 2 2 2
2 4 8 12 16 20 24 28 32
3 6 18 38 66 102 146 198 258
4 8 32 88 192 360 608 952] 1408
5 10 50 170 450 1002 1970} 3530| -5890
6 12 72 292 9121 2364 53367 10836| 20256
7 14 98 462 1666] 4942) 12642| 28814| 59906
8 16 128] 688 2816 9424 27008| 684641157184
TABLE II
m(n,d,l):n=1,...,8 d=1,...,8, L =38
nj d=1 d= d=3 d=4 d=5 =6 =7 =8
1 2 2 2 1 0 0 0 0|
-2 4 8 12 14 12 8 4 1
3 6 18 38 63 84} 92 84 63
4 8 32 88 188 328 480 600 646
5 10 50 170 445 952 1720 2680] 3650
6 12 72 292 906| 22921 4904 9084| 14799
7 14 98 462 1659 4844 11956] 25580| 48265
8 16 128 688 2808 9296| 25984| 62960 134684
iteration bm|  J(bm) b pl p2|
1 3.00 0.00 1.5 0.0%|  59.4%)|
2 2.50 0.00 2.0]  74.0%| 94.8%
3 2.25 2.00 2.5]  97.7%| 98.3%
4 2.38 - 0.00] 3.0 98.3% 98.6%!
5 231 2.00 3.5]  99.6%|  99.6%
6 2.34 2.00 4.0f  99.6%| 99.6%
7 2.36 0.00 4.5 99.6% 99.6%
8 2.35 0.00 5.00 99.6%| 99.6%
final b 2.35 0.00]
pl: recall probability of modified MV-eBAM
p2: recall probability of MV-eBAM
3.0 v
258 100.0% —
/ !
2.0 ; . 80.0% [
; 1 —bm S .
1 T - - - = = Jom) B 60.0% / —pl
1.0 T B T % 40.0% 2
0.5 - e . e /
b Ny | 20.0%
0.0
1 23 4 5 6 7 8 0.0%
. . 1.5 20 25 .30 35 40 45 50
iteration . .
b
Fig. 8. MV-eBAM radix searching (M = 400, n = L = 8, tolerance
= 0.01). Fig. 9. Modified MV-eBAM simulation M = 1000, n = L = 8, fully

. tested.
Hence, we can conclude that the following equation holds:

d—1 the worst case distribution, given a fixed d. Thus, the function
SZ(0) =m(n,d)=2- {Z m(n —1, z)} +m(n—1,d). m(n,d) in the previous case should be correctly rewritten as
i=0 m(n,d,l), where L = 2{+ 1 or L = 2] depending on whether

(26) L is even or odd.
Case Il — Small L: In this case, the L undoubtedly will L = 2[+1: Take the n = 2 shown in Fig. 4 as an example.
reduce the number of solutions, i.c., the number of patterns in  m(n,d, ) is the equal to m(n,d) subtracting' those solution
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TABLE III

m(n,d,l):n = 1,...

,8,d=1,...,8, L =9

n d=1 d=2 d=3 d=4 d=5 d=6 d=7 d=
1 2 2 2 2 0 0f . 0 0|
2 4 8 12 16 16 12 8 4
3 6 18 38 66 96 116 120 108
4 8 32 88 192 352 552 752 904
5 10 50 170 450 992 1880f 3120f 4600
6 12 72 292 912 2352| 5204] 10104| 17484
7 14 98 462] 1666] 4928] 12460| 27624| 54628
8 16 128 688] 2816] 9408| 26768| 66656] 147984

Surface plot of m(n,d)

0.301

Surface plot of log(m(n,d))
Fig. 10. Plots of m(n,d)and log(m(n,d)).

points located outside the square area with the side length
L — 1. In Fig. 4, the number of the solution points outside
of the square in the positive zp direction is m(n,d — | —
1)|zs>0 + m{n,d — 1 — 1)|4,=0. And

m(nvd_ - 1)|mn>0 +m(nvd_ - 1)|-’L‘n=0

= %[m(nvd—?—1)+m(n—l,d—l—1)],

The boundary condition of the above equation is shown as
follows:

m(n,d)=1, ifd=0
m(n,d)=0, ifd<0
m(n,d) =0, ifn=0,d#0.

.., T
AN

¥ 1 T T T T T
1 2 3 4 s 6 7 8

Contour plot of m(n,d)

&
I 1.191 2.526 3.416 3.861 4306
o 29m
1636
. 2,081 “‘6\
2.526
o il \ 2.971\
. 1636
3 \ ‘w 25%6_|
\2081\_
a 1191 186 ]
1 ] L] )] 1
2 3 4 5 s

Contour plot of log(m(n,d))

Hence, since the dimension of X vector is assumed to be n and
there are two directions along each dimension, the m(n, d,[)
can be concluded to be i

m(n,d,l) = m(n,d) —n
mn,d—=1-1)4+m(n-1,d—1-1)]. 27)
L = 2[: Referring to Fig. 5, the solution points located

outside of the box area are m(n,d—1)|,, >o+m(n,d—1)|z, =0
and m(n,d — 1 — 1)|,,.~0 + m(n,d — | — 1)|., —o. Hence,

m(n,d,l) = m(n,d) —g
Am(n,d =) +m(n—-1,d-1)
+mn,d—1-1)+m(n-1,d-1-1)}

(28)
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III. SIMULATION ANALYSIS

Example 1 — Asymptotical Stability of MV-eBAM: In order
to verify the high capacity and the stability of the ML-
eBAM, we have conducted simulations with n = p = 8§,
L =D = 8 M = 1000. Note that M is the number of
stored pattern pairs. In our simulations, the pattern pairs are
randomly generated, which are all unique pairs. The number of
patterns to be tested is 500. The detailed results are shown in
Fig. 6. In the Fig. 6, we have shown the effect of b to the recall
probability given fixed M, n, and L. If the b is increased, the
probability of successful recall is also increased.

In order to comprehend the function of the radix to the recall
probability, we also conducted a series of simulations in which
M is different, as shown in Fig. 7. Obviously, the larger radix
will give better recall probability.

Example 2 — Radix Searching Algorithm: Fig. 8 shows the
result of the radix searching algorithm. As shown in Fig. 8,
bm will converge to a fixed value, and the cost function J(by,)
will finally converges to 0. Then, we use this found radix to
repeat the recall simulation as those in Example 1. The recall
probability is 100%. This simulation shows the feasibility of
our searching algorithm of the radix. '

Example 3 — Capacity of Modified MV-eBAM: We first
conduct the recall simulation of the modified MV-eBAM
which is also compared with that of the MV-eBAM, as shown
in Fig. 9. As we explained in Section II, the modified MV-
eBAM will have a worse recall probability when the b is the
same, because the exponent part of the modified MV-eBAM
is smaller than that of the MV-eBAM.

In order to verify the capacity analysis described in of
Section 1I-B3, we use programs to compute m(n,d) and
m(n,d,!) when given the number of levels. The results are
shown in Tables I-III. The important thing we have to point
out is that the entries of the tables are not derived by (26)—(28).
In contrast, these numerical entries are computed by programs
when the the distribution of the patterns is the worst case.
They are matched with the prediction of (26)-(28). Fig. 10
shows the contour of the magnitude of m(n,d) in 3D natural
scale and log scale.

After the m(n,d) and m(n,d,l) are derived, then the
capacity of the modified MV-eBAM can be computed by (21).

IV. CONCLUSION

In addition to the proof of the stability of MV-ECAM and
the asymptotical stability of MV-eBAM, we have derived the
absolute lower bound of the radix and the capacity of the
MV-eBAM. The derivation of the lower bound of the radix

- provide us the information how large the radix should be
such that every unique pair can be recalled in the worst case
of pattern distribution. As for the radix searching algorithm,
this method provide the information how large the radix
should be when a certain set of pattern pairs is given. The
simulation results indicate a convincing performance regarding
the encoding and retrieving of pattern pairs. Since the analytic
form of the capacity of the MV-eBAM is hard to derive, a
modified MV-eBAM is proposed to estimate the capacity of
these multi-valued neural networks. Though the modified MV-

eBAM needs a larger radix to recall pattern pairs, it shows the
relationship among L, n and the capacity.
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