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Abstract

This investigation presents a novel method of fuzzy data processing using polynomial
bidirectional hetero-associative network (PBHAN). This has a higher capacity for
pattern pair storage than that of the conventional bidirectional associative memories
(BAMs) and fuzzy memories. In addition, a new energy function is defined. The
PBHAN takes advantage of fuzzy characteristics in evolution equations such that the
signal-noise-ratio (SNR) is significantly increased. The energy of the PBHAN defined by
the proposed energy function decreases as the recall process proceeds, thereby ensuring
the stability of the system. In this work, we prove the stability of fuzzy data processing
using PBHAN. The increase of SNR consequently enhances the capacity of the
PBHAN. The capacity of the fuzzy data processing using PBHAN in the worst case is
also estimated. © 2000 Elsevier Science Inc. All rights reserved.
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1. Introduction

Associative memories have received extensive interest in neural networks [1-
6.9.10]. In related works, Kosko [7.8,11-13] presented a fuzzy associative
memory (FAM) system structure. Kosko’s FAM is the very first example to use
neural networks to articulate fuzzy rules for fuzzy systems. The FAM model
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has been successfully applied to problems like target tracking [16], backing up a
truck-and-trailer [18], and voice-cell control in ATM networks [17] where dis-
tinctive features like robustness, modularity, and adaptability have been dem-
onstrated. However, no energy function introduced in their works could ensure
that every stored pattern pair resides at a local minimum on energy surfaces.
Moreover, no capacity analysis was performed as well. Despite its simplicity
and modularity, this model suffers from extremely low-memory capacity, i.c..
one rule per FAM matrix. Besides, it is limited to small rule-based applications.

There has been a renewal of interest in FAMs in recent years. For instance,
Yamaguchi et al. [20] presented a method to represent fuzzy [F-THEN rules
using associative memories and carry out fuzzy inference using association; a
conceptual fuzzy set (CFS) comprised of distributed fuzzy knowledge pro-
cessing have been proposed by Takagi et al. [21]. However, it is difficult to apply
FAM to complex knowledge processing, because these associative memories
have very poor storage capacity. Chung and Lee [15,19] proposed a multiple-
rule storage property of a FAM matrix. They showed that more than one rule
can be encoded by Kosko’s FAM. However, they did not derive the maximum
capacity of a FAM. The actual capacity will depend on the dimension of the
matrix and the rule characteristics, ¢.g., how many rules are overlapped. The
capacity of this model suffers from the limitations since the capacity depends on
whether the membership function is semi-overlapped or not.

The aims of this paper include:
I. an attempt to overcome the poor capacity in the works of other investigators;
2. a means of developing the mathematical theory associated with PBHAN.

A perfect recall theorem is established in this paper and the implementation
of the PBHAN model is more efficient accordingly. Firstly, we analyze the
framework of the high-capacity PBHAN in which the component of a fuzzy
vector is termed a fuzzy bit (fit). Moreover, we propose our energy function
and a two-phase approach to verify the stability. We adopt the signal-noise-
ratio (SNR) approach to derive the equations of the sufficient condition of the
PBHAN and, thus, attain the Z value, which is the power of polynomial, and
capacity of the PBHAN. The smallest Z value, which can still recall all of the
stored pattern pairs such that the dimension of the patterns can be as large as
possible, is also attained. Any Z value, which satisfies the condition of the
derived absolute lower bound, can recall all of the different stored patterns.
Finally, the capacity of PBHAN in the worst case is also derived.

2. Framework of high-capacity PBHAN
2.1. Evolution equations

Assume that we are given M pattern pairs, which are
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Let 1<i<M, x; €[0,1], 1</<n, y;€[0.1], 1<j<p, n and p are the
component dimensions of X and Y, and n is assumed to be smaller than or
equal to p without any loss of genevality. x;, vx € {0/4,1/4,...,4/A}, fuzzy
space =[1, 0], 4 is a fuzzy quantum, and ¢ is a fuzzy quantum gap. Instead of
using Kosko’s [10] approach, we use the following evolution equations in the
recall process of the PBHAN:

Zl! - = X,—.\'ﬂ: M
i l1 I
ZM - |LXi =X ||? M
i=1 u

= (2)

Vi =

M u—| Y, —¥|° M
Zf‘- 1 Xik - u (3)
X = Y E y
ZM u—=|| Y=Y\ M
i=1 u

where M denotes the number of patierns in the PBHAN: X,, Y., i=1,.... M,
represent the stored patterns; X or Y is the initial vector presented to the
network: x; and x; denote the kth digits of X and X, respectively; y; and yy
represent the kth digits of Y and ¥, respectively; Z is a positive integer; u
denotes a function defined as

H—Z”:Z(IIX — X[ + 1Y - -\F). (4)

i=1 j=

Notably, u is bounded according to Eq. (4).
2.2. Energy function and stability

The fact that every stored pattern pair should produce a local minimum on
the energy surface to be recalled correctly accounts for why the energy function
is intuitively defined as

E(X,Y) = ZHX XY -y (5)

Fuzzy data model using PBHAN can be deemed as a variety of bidirectional
associative memory (BAM) [14]. Therefore, its stability can be elucidated by
closely examining its two phases of evolution, i.e., X — ¥ and ¥ — X.
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Theorem 1. The PBHAN modeled by [Eqs. (2) and (3)] is a stable system.
Proof. We discuss the stability by observing the behavior of energy function of

two directions, X — Y and ¥ — X, respectively.
Phase 1: X — Y. We use the energy function as Eq. (5). Thus, the V.EX,Y)

can be computed as

VG E(X,Y) = ZZ(xk —xy)[[¥ = Y|
=1

X
M
_ 2(Zur ] mr)
=]

M 2 M
S e (= 1Y = %) /)

—~ (6)
’ M
S (=Y = %Py /u)
The difference of E due to a fit’s change can, therefore, be derived as
ALE(X,Y) =V, EX,Y)- 4,
M N
= 2(Z|IY - Y,-H*)
i=1
” M2
S (=Y = vipy) |
Xp — y : Y7 ' (xk -—.l'_.q-)
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M N
—-a(zmr—nw)
i=1
5 M
S (= 1Y = X)) ,
— X | - (XI‘. — .I'k). (7)

S (= 1Y = v )™

According to Eq. (3), we have the following inequalities when x| is the next

state of x;.
Case 1: If
v 2 ut
S (= (1Y = %)) /) 1
< <X + 57,
27

Py

Xp — = %

P (w1 vy

then x; = x; according to Eq. (3). Thus, 4, E(X,Y) = 0.
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Case 2. If
M 2 M
St (= 1Y = ¥iP)/u) |
> 5 M »>’ X + =
S (= Ny =il u)

27
then x; > x;. Thus, according to Eq. (7), 4, E(X,Y) < 0.
Case 3: 1f

, M

Z',“‘m ((u —||Y - }f;||")/”) ]
M N M= < Xy — 7—),
>in1 ((u — Y - }§[|-)/,4,) 2/

then x; < x;. Thus, according to Eq. (7), 4,E(X.Y) < 0.

In sum, X' — Y phase causes £ to decrease, A, E(X,Y)<0.

Phase 2: Y — X . By the similar derivation as shown in the X — Y phase, we
also can prove that Y — X is asymptotically stable. The only difference is the
definition of the energy function in this phase. We again use the energy func-
tion as Eq. (5). Thus. the V,, £(X.Y) can be computed as

M
VR EWX,Y) =23 — ) lIX — X|°
=1

= 2(an —X,-nz)

S o (= 1 = ) )
= . ®)

S (o)

Since the procedure of the derivation is very much the same as that of the
X — Y phase. there is no need to repeat the lengthy discussion.

Notably, the energy function defined in Eq. (5) is bounded. Meanwhile, the
X — Y phase always drags down E(X, Y), while the Y — X phase also reduces
E(X. Y). Then, the evolution will be terminated when E(X, Y) reaches a min-
imum, where a pattern pair is stored. [J

2.3. Analysis of capacity of PBHAN

The SNR approach is adopted herein to compute the capacity of PBHAN,
Let X; and Y, be the stored pattern pairs. Assume that X, is the input pattern
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pair and Y, is recalled expectantly. Substituting X, for X allows us to rewrite
Eq. (2) as

M 2\ M 2
Z u—||Xi =X > u— || X2 =X
Vi - = Vik - 1- —f—_l"z,( ’

= u u
u—||lXs —X 2
P L R 5
u
u—||Xy, — X |°
+ Yk | A;; !l . (9)

The largest noise that can appear is in the worst case which any X;, i # 1, is just
one component different from X,. Meanwhile, the other components of X; and

X, remain the same. For instance, X| = (xy;,X12,...,X1,), and X; = (x|,
X124 ey X, £ 1/(24)), i # 1, wherexy € {0/4,1/4,...,A/A},k=1,2,...n, and
v €{0/2,1/2, ..., Afi}, k=1,2,...p. The first term in the above equation

corresponds to the signal, and the other terms are the noise. The power of
signal is

S = Vig - ]:. - “())

Besides the first term, the remaining terms are actually the sum of M — 1 in-
dependent identically distributed random variables. Therefore, the noise of
these terms 1s M — 1 times of the noise of a single random variable. The fol-
lowing inequalities can be obtained from Eq. (9).

y o\ M y L\ M
— (u—||Xi = X| . X u—ss
SR E —”'— Sy - 17+ E Vik * y -

i=1

2 I -
Sy 17+ (’1{ = D)y - . = S + Nmax- (] 1)

The second term is viewed as the total noise in the worst case. Let yy = j/4,

je1{0,1.2,3....,2}. The sufficient condition for the noise must be bounded
is
L\ M
| N u—-x |
ik —=—<viu- 1"+ (M= 1)y - - < Vi +=—- (12)
2/ u 24

Herein, we take yy; = j/4 into the above equation, then it can be simplified as:
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L\ M (13)
M-y (2] | <L
( .} u 2!
PR Chr AN PR
(M—1)- p <2—j\5

The worst case will occur when j = 1. Thus, we deem the above equation as the
sufficient condition for the PBHAN to accurately recall any pattern. Since the
value inside of the absolute bracket in Eq. (13) is positive, the minimal Z in the
worst case for the PBHAN is derived in the following:

u—5\"
(M—l)( ) SE,

|\ M
it 1
) M—l)’

("
(5
"(* *’)
won(t5E) e

Since the second product term on the left-hand side of Eq. (14) is smaller than
zero, we obtain:

In(1/2)
In((u— (1/2%))/u)’

In M* = ]n{ ln(1/2)’ },
In((u—(1/47))/u

In(1/2) o)
1 n(l
Z2 nnM""{in((u—(l/f))/u}‘

M = (15)
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where
u< @ - (n+p)<ey-2n)<M-(M—1)-n. (17)

Since we wish to derive the absolute upper bound of «, it would be reasonable
to use n = max(n, p) instead of n = min(n, p) in the result of Eq. (17). Hence,
the Eq. (16) is the lower bound solution of Z, and according to Eq. (15). the
capacity can be derived as

-1

M= n(1/2) , (18)
In((u—(1/27))/u)

where

u=M:-(M~—1)-n.

3. Simulation analysis

To verify the capacity analysis described in Section 2.3, we utilize computer
programs to produce the values among M, Z, and n for / equal to 2, 5, 10, and
100 for the lower bound of Z. Figs. 1-4 plot the above results, respectively.
(The legends represent the values of Z). After the lower bound solution of Z is
derived, the capacity of PBHAN can be computed by Eq. (18). Figs. 5-7 are the
relationships of capacity, M, vs. n. In Fig. 5, 2 = 10, Z = 3; in Fig. 6, 4 = 100,
Z =4; in Fig. 7, 2=300, Z=4. According to these figures, the PBHAN
provides a significantly high-capacity of storage for pattern pairs.
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3

Fig. 1. The relationship of M, Z and n for 4 =2.
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Fig. 4. The relationship of M. Z and n for 7 = 100.
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Fig. 6. The capacity of PBHAN in the worst case (4 = 100, Z =4),
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Fig. 7. The capacity of PBHAN in the worst case (1 = 300, Z = 4).

Example 1. We can use the result of this research for pattern recognition
problems. The PBHAN is used to store and recall a set of 7 x 11 fuzzy data

composed of 26 different pattern pairs (English letters, upper case and lower
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Fig. 8. Pattern recognition examples (M = 26, n = p =T77).

case). We then apply the evolution equation in Section 2.1. Fig. 8 presents
some pattern pairs with n = p =77 to this network. The number of these
pattern pairs are much less than our storage capacity, (M), thus, according to
our simulation result, only one iteration is required for every capital letter to
recall its corresponding lower case letter correctly, and vice versa.

4. Conclusion

According to our results, the PBHAN provides an extremely high-storage
capacity for pattern pairs. This method utilizes a polynomial scheme to mag-
nify the capacity. The proposed energy function ensures that every stored
pattern pair is located in a local minimum of the energy surface. The capacity
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of the PBHAN in the worst case is analytically estimated, thereby allowing us
to predetermine the size of the PBHAN by the demand of capacity possible.
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