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Abstract—The multi-valued exponential bidirectional associative
memory (MV-eBAM) has been proposed and proved to be asymptotically
stable under certain constraints. Although multi-valued eBAM has been
verified to possess high capacity by thorough simulations, the capacity
is still unable to be solved analytically. In this paper, an algorithm is
proposed to derive the capacity. Some important characteristics, including
the absolute lower bound of the radix, and the approximate capacity
are also discussed. The result shows that the multi-valued eBAM indeed
possesses high capacity.

Index Terms—Bidirectional exponential memory, exponential BAM,
multi-valued.

I. INTRODUCTION

T THE BIDIRECTIONAL ASSOCIATIVE MEMORY (BAM)
proposed by Kosko [1], [2] allows an associative search for

stored stimulus-response pairs(Xi; Yi). The storage capacity for
perfect recall of the BAM is limited by the number of neurons. Jeng
et al. [3] proposed one kind of exponential BAM. Although the
impressive capacity of an eBAM has been estimated [4], the data
representation of BAM or eBAM is still limited to be either bipolar
vectors or binary vectors. Based upon the multi-valued concept
applied in Hopfield network for analog-to-digital (A/D) conversion
[5], Wang et al. proposed the multi-valued exponential bidirectional
associative memory [6]. In this work, the data range was expanded
from f�1; +1gn to f1; 2; � � � ; Lgn; L� 1, the asymptotic stability
was proved, the high capacity of MV-eBAM was verified using the
result of several simulations. However, critical features about this kind
of network, such as the lower bound of the radix and the estimation of
the capacity, were not thoroughly explored. In this paper, an algorithm
to derive the capacity of MV-eBAM will be proposed, the minimum
of the radix used to recall all of the stored pattern pairs correctly will
be computed, and the approximation of the capacity will be shown
analytically and graphically.

II. FRAMEWORK OF MV-eBAM

Suppose we are given M pattern pairs, which
are f(X1; Y1); (X2; Y2); � � � ; (XM ; YM )g, where
Xi = (xi1; xi2; � � � ; xin); Yi = (yi1; yi2; � � � ; yip), wheren is
assumed to be smaller or equal top without loss of robustness.
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Hence, according to [6], the evolution equations of the MV-eBAM
are shown as
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(1)

where
X andY input key patterns;
b positive number, called the radix withb > 1;
xk andxik kth digits ofX andXi with yk andyik for Y andYi,

respectively;
H(�) staircase function shown as the following equation

H(x) =

1; x < 1

L; x > D

L

D
� x+ 0:5; elsewhere

(2)

where
l = 1; 2; � � � ; L;
L number of finite levels;
D finite interval of the staircase function.

The reasons for using an exponential scheme in (1) are to enlarge the
attraction radius of every stored pattern pair and to augment the de-
sired pattern in the recall reverberation process. In the evolution equa-
tions in (1), if the given input pattern is close to the desired pattern,

the weighting coefficient,b
� jx �x j

, will be close to the max-
imum, 1, while if the input pattern is far from the desired one, it will
approach 0. As for the purpose of the denominator, it makes theyk and
xk to be the centroids of all of theyik ’s andxik ’s, respectively.

In order to precisely compute the capacity of the MV-eBAM, we
have to consider the worst case of pattern distribution. Assume that
all of the stored pattern pairs are unique, and the given input pattern
is the same as either theX vector orY vector of one of the pairs.
Thus, according to (1), we can take one of the evolution equations as
an illustration. LetXh be an input vector which meansYh is the vector
to be retrieved.

See (3) at the bottom of the next page where the first term in the
H(�), i.e.,yhk, is deemed as the signal, and the second term is treated
as the noise. In order not to make theyk jump to either ofyhk ’s adjacent
levels, the sufficient condition is

�

1

2
<

i 6=h

(yik � yhk)b
� jx �x j

1 +
i6=h

b
� jx �x j

<
1

2
: (4)

That is, the noise must be bounded. Therefore, the discussion can be
divided into two parts. The right part and the left part of the inequality
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shown in (4) can be simplified, respectively, to the following inequali-
ties:

i6=h

[2(yik � yhk)� 1] � b
� jx �x j

< 1

i6=h

[2(yhk � yik)� 1] � b
� jx �x j

< 1:

In summary, the above two inequalities are rewritten as the following
equation:

i6=h

[2jyhk � yikj � 1] � b
� jx �x j

< 1: (5)

Let us consider the distribution under the worst condition,jyhk �
yikj = L� 1. Then (5) is again to be restated as

i6=h

(2L� 3) � b
� jx �x j

< 1: (6)

The worst case for the pairs distribution happens when thoseXi,
i 6= h, are located as close toXh as possible. This will produce the
largest noise to the signalyhk. For instance, ifn = p = 2, the worst
condition toXh is shown in Fig. 1. Assumer is the largest number of
different digits between anyXi, i 6= h, andXh in the worst case of
pattern pairs distribution. In addition, the number of level used in the
staircase functionH(�) also affects the distribution of the pattern pair.
Thus, assumem(n; d; l) is the largest number of patterns satisfying
jXh �Xij = d, whered is the number of different digits betweenXh

andXi, andl will be defined in the following text. Then the worst case
of the pattern pairs distribution must be

r�1

d=1

m(n; d; l) �M � 1 <

r

d=1

m(n; d; l) (7)

wherel = L=2 if L is even, andl = ((L�1)=2) if L is odd. Therefore,
according to (7), (6) can be rewritten to be the following equation:

(2L� 3)�

r�1

d=1

m(n; d; l) � b�d

+ M � 1�

r�1

d=1

m(n; d; l) � b�r < 1: (8)

The definition of the absolute lower bound of the radix can be stated
as follows: the smallest radix which is able to recall every uniquely
stored pattern pair. In other words, we are interested in discovering

what is the minimal radix that is good enough to recall every pattern
pair as long as these stored pairs are one-to-one associated. Therefore,
we have to consider the worst case in order to derive this minimal
radix, which is calledthe absolute lower bound(ALB). The signif-
icance of ALB is stemmed from the VLSI implementation of the ex-
ponential scheme of MV-eBAM. One of the successful realization of
the exponential scheme used in (1) is using the subthreshold current in
MOSFET transistors [7]:

ID / I0 exp
q(VG � VT )

MkBT
(9)

where
I0 current constant;
VT threshold voltage;
M slop factor.

However, in any real implementation, the dynamic range of the expo-
nentiation circuit will be constrained [8]. Therefore, the performance
of this model is the case of fixed dynamic range needs to be analyzed.
Suppose the dynamic range of the exponentiators is fixed atD, where

D / bn: (10)

Then asn grows,b decreases. This means if we can derive the minimum
radix, we can have a maximum dimension for the stored vectors. Hence,
the exploration of ALB of the radix is very critical when it comes to
the physical VLSI implementation for such a neural network.

In fact, the computation of ALB is tightly correlated to the capacity
analysis. We also have to consider the worst-case pattern distribution.
Hence, (8) gives an inequality to compute the minimalb for the
MV-eBAM.

III. COMPUTATION OFCAPACITY AND THE ABSOLUTELOWERBOUND

Since (8) is hard to be solved analytically, the numerical method
is necessary. A deterministic algorithm to derive the capacity,M , is
sketched as follows:

Given
Let , , , ;
While

;
;

End while
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Fig. 1. Worst distribution of MV-eBAM(n = p = 2).

A family of curves forM; b; L whenn = 8 can be computed as
shown in Fig. 2. The family of these curves is similar to theI–V curves
of MOS transistors. Therefore, several terms are borrowed to describe
the properties of these curves. We call the left side of the curves the
“linear region,” and right side “saturation region.” The result of (8) is
dominated by the first term,m(n; d; l) � b�1, sinceb � M . The
boundary of these two regions is located atM � 1 = m(n; 1) = 2n,
whereb = 2n(2L � 3).

A. Linear Region

M � 1 < 2n. Eqn. (8) can be simplified to be

b � (M � 1) � (2L� 3):

Thus, the capacityM is rewritten asM � (b=(2L� 3)) + 1.

B. Saturation Region

M � 1 > 2n. Becauseb � M andbd � m(n; d; l), the curves
will reach a saturation value whenr is getting larger. The relationship
between capacityM and the radixb is the same as that of the boundary
point, which is

b � 2n(2L� 3)

This implies that whenb is larger than the boundary point, it will then
approach the maximum number of combinations of the input vector, i.e.
M � Ln. Therefore, the MV-eBAM indeed possesses a high capacity.

IV. CONCLUSION

In this paper, we have demonstrated the high capacity of
MV-eBAM. Since the analytic form of the capacity of the

Fig. 2. Lower boundb versus capacityM .

MV-eBAM is hard to derive, a novel method considering the
worst case pattern distribution is proposed to estimate the capacity
of these multi-valued neural networks. The derivation of the
lower bound of the radix provides with us the information about
how large the radix should be such that every unique pair can
be recalled in the worst case of pattern distribution. In addition
to the stability of the MV-eBAM, these characteristics have
revealed the potential of this structure to be utilized in a variety
of applications. Due to the high capacity and the multi-level
feature of this network, the MV-eBAM is potentially useful in
the application of data compression, where a reduction of the
input pattern space dimension is essential. Moreover, this network
is particularly good at learning perceptive type of tasks such as
the recognition of complex patterns. Other applications include
content-addressable memory, storage of words and of continuous
speech, and A/D conversion.
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