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This investigation presents a novel method of image processing using the polyno-
mial bidirectional hetero-associative network (PBHAN). This network can be used for
industrial application of optical character recognition. According to the results of de-
tailed simulations, the PBHAN has a higher capacity for pattern pair storage than do the
conventional bidirectional associative memories and fuzzy memories. The practical
capacity of a PBHAN considering fault tolerance is discussed. The fault tolerance re-
quirement leads to the discovery of the attraction radius of the basin for each stored pat-
tern pair. PBHAN takes advantage of fuzzy characteristics in evolution equations such
that the signal-noise-ratio is significantly increased. In this work, we apply the result of
this research to pattern recognition problems. The practical capacity of fuzzy data rec-
ognition using PBHAN and considering fault tolerance in the worst case is also estimated.
Simulation results are presented to verify the derived theory.

Keyworks: associative networks, optical character recognition, fuzzy data, neural net-

works, PBHAN

1. INTRODUCTION

The methodologies used in optical character recognition schemes usually include
linear classification, statistical approaches, fuzzy set theory, and many others. Associa-
tive memories have been the focus of extensive research in the study of neural networks
and pattern recognition [1-3]. In related works, Kosko presented a fuzzy associative
memory (FAM) system structure [4]. However, no energy function introduced in his
works could ensure that every stored pattern pair would reside at a local minimum on
energy surfaces. In this work, we present a novel method of image processing using the
polynomial bidirectional hetero-associative network (PBHAN). PBHAN has a higher
pattern pair storage capacity and better performance in image processing than do the
conventional BAMs or fuzzy memories. Since an image character might be noisy, add-
ing fault tolerance capability to PBHAN facilitates noise immunity. The practical ca-
pacity of image processing using PBHAN and considering fault tolerance is estimated
here. The derived theory has been applied successfully to OCR.
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2. FRAMEWORK OF HIGH CAPACITY PBHAN

2.1 Evolution Equations

Associated characters or images are digitized or quantized into pattern pairs, which
are {(X1, Y1), (X2, Y2) , …, (XM, YM)}, where Xi = (xi1, xi2, …, xin), Yi = (yi1, yi2, …,yip).
Let 1 ≤ i ≤ M, xij ∈ [0, 1], 1 ≤ j ≤ n, yij ∈ [0, 1], 1 ≤ j ≤ p, n and p be the component di-
mensions of X and Y, and let xik , yik ∈ {0/λ, 1/λ, …, λ/λ}, fuzzy space = [1, 0], and λ be
a fuzzy quantum. The following evolution equations are the recall process of the
PBHAN:

, (1)

, (2)

where M denotes the number of patterns in the PBHAN, Xi, Yi and i = 1, …, M represent
the stored patterns, X or Y is the initial vector presented to the network, xk and xik denote
the kth digits of X and Xi, respectively, yk and yik represent the kth digits of Y and Yi, re-
spectively, Z is a positive integer, u denotes a function defined in the equation

(3)

where ,)1()2()( 22 nMMnCpnCu MM ⋅−⋅≤⋅≤+⋅≤ if n is assumed to be larger than p and
H(.) is a staircase function shown in the equation

(4)

Note that if λ��, then ,)( xxH ≈ for x∈[0, 1]. Furthermore, u is bounded according
to Eq. (3).

2.2 Energy Function and Stability

The fact that every stored pattern pair should produce a local minimum on the en-
ergy surface to be recalled correctly accounts for why the energy function is intuitively
defined as

(5)
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The fuzzy data model using PBHAN can be viewed as one kind of BAM, i.e., bidirec-
tional associative memory. Therefore, its stability can be elucidated by closely exam-
ining its two phases of evolution, i.e., X → Y and Y → X. In addition, we adopt the
SNR approach to compute the theoretical capacity of PBHAN in the worst case [5].
The theoretical minimal capacity of PBHAN without considering fault tolerance in the
worst case is

where nMMnCpnCpCnCu MMMM ⋅−⋅≤⋅≤+⋅=+≤ )1()2()( 2222

2.3 Analysis of the Capacity of PBHAN with Fault Tolerance

Considering the required fault tolerance capability, we need to enlarge the area
where the stored patterns reside. We introduce a basin concept into the storage of pat-
terns. The radius of the basin where the target pattern is located is called the attraction
radius, r. That is, where the distance between X (input pattern) and Xh (the target pattern)
is less than or equal to r, we can still recall the target pattern, Xh, and its corresponding
pattern, Yh.

Theorem 1: If rXXh ≤− and the PBHAN can recall Xh given X, then the maximal
capacity of stored pattern pairs for a fuzzy PBHAN in the worst case is

Proof: According to Eq. (1), we will only discuss the Y part of the evolution equations
without any loss of robustness here. The SNR approach is adopted herein to compute
the practical capacity of PBHAN. Note that if λ��, then ,)( xxH ≈ for x∈[0, 1].
Thus, we can rewrite Eq.(1) as

≈ ,

. (6)

According to Eq. (6), the following equations can be obtained.

,
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The largest noise possible appears in the worst case, in which any Xi, i ≠ h, is just one
component different from Xh (assuming that X is the input pattern and Yh is about to be
recalled). Meanwhile, the other components of Xi and Xh remain the same. For in-
stance, Xh = (xh1, xh2, …, xhn), and Xi = (xi1, xi2, …, xin ± 1/(2λ)), where xik, yik ∈ {0/λ,
1/λ, …, λ/λ}.

Note that if the distance between X and Xh (the target pattern) is less than or equal to
r, then this input pattern, X, can still recall the target pattern, Xh, and its corresponding
pattern, Yh. Considering the required fault tolerance capability, we substitute the

iXX − with the attraction radius (r) in Eq. (6). Eq. (6), thus, can be rewritten as

.

Here, Yh is assumed to be the desired pattern, and yk, yik and yhk represent the kth digits of
Y,Yi and Yh, respectively. The first term in the above equation corresponds to the signal,
and the other terms are the noise. The power of the signal is

.

Let Xi and Yi be the stored pattern pairs, and, for the sake of clarity, let

, (7)

. (8)

According to Eq. (6) to Eq. (8), the following inequalities can be obtained:
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Let yhk = i/λ, ygk = j/λ, i and j ∈ {0, 1, 2, …, λ}, and yhk and ygk ∈ {0/λ,1/λ,2/λ,…,λ/λ}.
The expectation values of i and j can also be derived as follows:

The sufficient condition for the noise to be bounded is

.

Since we are deriving the inequality of the sufficient condition, the left-hand side of the
above inequality indicates where the lower bound is,

(10)

. (11)

In addition, the following inequalities can be obtained from the Eq. (8):
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The sufficient condition for the noise to be bounded is

.

Again, since we are deriving the inequality of the sufficient condition, the left hand side
of the above inequality reveals where the upper bound is:

,

, (12)

,

. (13)

Herein, we also take the expectation value of j (E(j) = λ/2) into the above inequality.
Then, we can make the following assumption for the equations easy to read:
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Assume that we take A and B into Eqs. (11) and (13); then, Eqs. (14) and (15) can be
derived as follow, respectively:

, (14)

,

. (15)

According to Eqs. (14) and (15) , the following inequalities can be simplified as follows:
Hence, the maximal Z in the worst case for the PBHAN is derived in the following to
accurately recall every stored pattern pair is derived as follows:

,

,

, (16)

. (17)

Since ln((u�r2)/u) in Eq. (17) is smaller than zero, we obtain

(18)

, (19)

where

(20)

and n = min(n, p). We deem the above equation to be the absolute upper bound of u.
The above Eq. (19) is the upper bound solution of Z, and according to Eq. (18), the prac-
tical capacity can be derived as follows:

. (21)
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where

3. SIMULATION ANALYSIS

The BAM-like associative memory is a two-layer heteroassociator that stores a pre-
scribed set of bipolar library pairs. It consists of two layers of neurons. One layer has
n neurons and the other has p neurons. n is assumed to be less than or equal to p with-
out any loss of robustness. The following definitions of n and p from Eq. (22) to Eq.
(25) are the same.

Amari and Maginu [6] conducted capacity analysis of the first-order autocorrelator,
which has capacity

(22)

Baldi and Venkatesh [7] performed the same analysis for a higher-order autocorrelator,
which has capacity

(23)

As for the capacity of Kosko’s BAM, Haines and Hecht-Nielsen [8] estimated it to be

(24)

Tai et al. [9] also proposed a high-order BAM. They did not estimate or prove the pos-
sible capacity of their high-order BAM except, but claimed better recall probability.
However, we still can reasonably expect that the capacity of the high-order BAM will be
about that of the high-order autocorrelator, because 1) the BAM is intrinsically a variety
of the high-order autocorrelator, and 2) if n is large, the capacity shown in Eq. (22) is
about the same as that in Eq. (24).

Haines and Hecht-Nielsen [10] proposed another variety of BAM, i.e., the non-
homogeneous BAM. They enlarged the capacity to be

(25)

Shi et al. [10] proposed a general model for BAMs (GBAM) with associative patterns
between the X-space and Y-space. The storage capacity of each of the above BAMs is
no larger than n. In contrast, the storage capacity of GBAM is 0.9n, 1.05n, 1.1n and
1.15n for n = 10, 20, 30 and 40, respectively. The capacity of GBAM exceeds n when n
is greater than 10 and grows more than linearly as n increases.
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Kosko’s [4] fuzzy associative memory (FAM) was first to use neural networks to
articulate fuzzy rules for fuzzy systems. Despite its simplicity and modularity, this
model suffers from extremely low memory capacity, i.e., one single rule per FAM matrix.
Furthermore, it is limited to small rule-base applications.

Chung and Lee [11] proposed a multiple-rule storage property for a FAM matrix.
They showed that more than one rule could be encoded by the Kosko’s FAM. However,
they did not derive the maximum capacity of a FAM. The actual capacity depends on
the dimension of the matrix and the rule characteristics, e.g., how many the rules overlap.
The capacity of this model is limited since it depends on whether or not the membership
function is semi-overlapping.

Table 1 presents the capacity (M) of Amari’s first-order autocorrelator, Baldi’s
higher-order autocorrelator, Kosko’s BAM (estimated by Hecht-Nielsen), the nonho-
mogeneous BAM, GBAM and PBHAN with λ = 2, respectively. We used PBHAN
with λ = 2 to obtain a fair comparison between it and other BAM-like designs which
usually process either binary vectors or bipolar vectors. According to the data shown in
this table, fuzzy data recognition using PBHAN has high pattern storage capacity.

Table 1. A comparison of capacity (M) among Amari’s first-order autocorrelator,
Baldi’s higherorder autocorrelator, Kosko’s BAM (estimated by Hecht- Niel-
sen), the nonhomogeneous BAM, GBAM and PBHAN.

n
Name

10 20 30 40 50 60 70 80 90 100

AMARI 1.83 2.82 3.73 4.60 5.44 6.25 7.03 7.81 8.56 9.31

Baldi 1.08 1.66 2.20 2.71 3.19 3.66 4.11 4.56 5.00 5.42
Kosko 2.17 3.33 4.41 5.42 6.39 7.32 8.23 9.12 10.00 10.85
non-ho 0.60 3.92 7.71 12.52 18.27 24.94 32.47 40.84 50.03 60.02

GBAM 9 20 33 46 60 75 91 108 126 145

PBHAN
(λλλλ = 2)

27 55 83 110 138 166 194 221 249 277

r M n r M n
0.000001 10947 50 0.000001 11756 150
0.000010 5558 50 0.000010 6438 150
0.000100 1591 50 0.000100 2145 150
0.001000 858 50 0.001000 904 150
0.010000 246 50 0.010000 262 150
0.100000 63 50 0.100000 73 150

Fig. 1 reveals that the practical capacity of a PBHAN with the fault tolerance ability
drastically decreases with increasing the attraction radius.
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Fig. 1. The practical capacity of PBHAN in the worst case with fault tolerance radius (λ = 3, Z = 3).

Example 1. We applied the results obtained in this research to real character recognition
problems. The PBHAN was used to store and recall a set of 7 × 11 fuzzy data com-
posed of twenty-six different pattern pairs (English letters, upper case and lower case).
Fig. 2 presents some pattern pairs with n = p = 77 to this network. According to our
simulation results, only one iteration was needed for every capital letter to recall its lower
case letter correctly, and vice versa.

Fig. 2. Pattern recognition examples (M = 26, n = p = 77).

4. CONCLUSIONS

According to our results, fuzzy data recognition using PBHAN provides enjoys high
pattern storage capacity. This method utilizes a fuzzy scheme to increase capacity.
The proposed energy function ensures that every stored pattern pair is located in a local
minimum of the energy surface. The practical capacity of a PBHAN which considers
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fault tolerance in the worst case can be estimated, thereby allowing us to predetermine
the size of the PBHAN based on the possible capacity requirement.
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