
ELECTRICAL TESTING determines whether

each die on a wafer functions as originally

designed. But these tests don’t detect all the

defective dies in clustered defects on the wafer,

such as scratches, stains, or localized failed pat-

terns. So instead, five to 10 people visually check

wafers and hand mark the defective dies in, or

close to, these flawed regions. Although this

manual checking prevents many defective dies

from continuing on to assembly, it does not

detect localized failure patterns—caused by the

fabrication process—because they are invisible

to the naked eye. 

To solve these problems, we propose an

automatic, wafer-scale, defect cluster identifier.

This software tool uses a median filter and a

clustering approach to detect the defect clusters

and to mark all defective dies. Our experimen-

tal results verify that the proposed algorithm

effectively detects defect clusters, although it

introduces an additional 1% yield loss of elec-

trically good dies. More importantly, it makes

automated wafer testing feasible for application

in the wafer-probing stage. Such a test would

occur early in the manufacturing process in

Figure 1 and avoid the cost of assembling and

testing defective dies.

Other researchers have proposed algorithms

that detect defects or provide defect density dis-

tribution for yield prediction.1-5 To our knowl-

edge, however, there are no tools that detect

defect clusters and automatically mark poten-

tially bad dies during wafer probing.

We base our software tool on an algorithm

that works with image processing techniques6,7

to detect the defect clusters on a wafer. The tool

implements the algorithm immediately follow-

ing wafer probing because failed dies marked

in the wafer map file assist in locating the flawed

areas. Incorporating this technique during the

testing stage eliminates manual operation and

permits a more fully automated test process.

Defect cluster detection algorithm
Several process stages make up our algo-

rithm, which we summarize as follows:

1. Read in the wafer map file’s data format and

convert it into a binary matrix.

2. Apply the median filter to the binary matrix

to remove the isolated defective die.
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3. Perform nearest-neighbor clustering on the

binary matrix.

4. Build the linked lists for the defect clusters.

5. Go through the linked lists and mark all the

eight-adjacent neighbors as defective dies

to compensate for the unexpected erosion

from median filter application. (We define

two defective dies as eight-adjacent if they

share either a side or a corner.)

6. Mark every isolated interior die (a good die

surrounded by eight defective dies) in the

defect cluster.

7. Generate the output file for further processing.

Wafer map conversion
The basic data format the prober uses is the

Semiconductor Equipment Communication

Standard (SECS) format developed by the

Semiconductor Equipment and Materials

Institute (SEMI). The prober’s wafer map

includes the formatting information defined by

SEMI (such as lists, single and multibyte inte-

gers, and so on) as well as the map and header

data.8 The header data defines the wafer’s ori-

entation during probing. This data consists of

a list of individual reference points used to

compare the physical wafer to the logical

wafer (the wafer map data file), the die size,

the total number of rows and columns, and the

number of dies to be processed on the wafer.

The wafer map’s data section records die

count in the row, the direction of x-axis travel

from one die to the next, and the dies’ actual

binary codes.

Our tool reads in the wafer map file reported

by the prober and transforms it into a bounded

matrix with m by n entries, where m denotes the

total number of columns on the wafer and n

denotes the total number of rows. To simplify

processing, our tool converts the binary codes

stored in the wafer map into binary values for

each matrix entry, where 0 represents a good

die and 1, a defective die. This simplification

does not differentiate the defective dies in the

way the probe instrument does. A wafer map

might contain different kinds of defects, and

binary codes are assigned to defective dies for

these different defects. Although our tool uses

this simplified data structure, its output wafer

map file still follows the SECS standard.

Median filter application
This algorithm separates the wafer’s defect

clusters from its isolated defective dies. We con-

sidered several image filtering techniques for

stripping off the isolated defective dies, includ-

ing Wiener, inverse, spatial-frequency, and

median filtering. We also examined wafer map

samples with defective-die distribution provid-

ed by Philips Semiconductor, Kaohsiung,

Taiwan. With respect to the clustered defects,

the isolated defective dies on these samples

appeared to be salt-and-pepper type noise.

Thus, the median filter is a good candidate for

the filtering task because of its ability to remove

salt-and-pepper type noise.

A median filter finds the median of all the

pixels within a region of an image called a win-

dow. Applying the filter to an image removes

random noise with minimum image blurring.
Random noise includes negative-exponential

and salt-and-pepper type noise. The median fil-

ter easily removes outlier noise from images

where less than 50% of the pixels are outliers.

To perform median filtering in a pixel’s win-

dow, we sort both the pixel’s and its neighbors’

values, determine the median, and finally

assign this value to the pixel. That is,

out(x, y) = 

median {in(x − m, y − n), (m, n) ∈ W}

where in(x, y) and out(x, y) are the input and

output images, and W is the chosen window.
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Figure 1. IC manufacturing process. Triangles represent storage of the dies.



For example, in a 3 × 3 window, the median is

the fifth largest value; in a 5 × 5 window, it is the

thirteenth largest value; and so forth. Assume

that a 3 × 3 window has values 40, 10, 20, 25, 15,

20, 35, 30, and 20, as Figure 2 shows. Sorting of

the window’s values as 10, 15, 20, 20, 20, 25, 30,

35, and 40, results in a median of 20.

The approach permits for an even simpler

median filter design because each matrix entry

contains only a 1 or a 0. This design can just

count the total number of 1s that appear in the

3 × 3 neighborhood. Then the pixel’s value can

be set to 1 if the number of 1s is greater than or

equal to five. After application of the median

filter, all 1s left in the matrix will be treated as

defective dies in the defect cluster. For median

filtering, we do not consider edge dies to be

part of a defect cluster. So our algorithm tem-

porarily marks these dies as good, so they will

bypass the filtering process.

Nearest-neighbor clustering
After the tool removes all isolated defective

dies, it uses a region-based segmentation step

to group various regions into an image with

similar features.9 Clustering techniques pro-

posed in prior pattern recognition literature10

have similar objectives, so we can apply these

techniques to segmentation. We adopted the

nearest-neighbor method to identify defective

dies of different defect clusters.10 We imple-

mented this method by defining the distance

between two defect clusters as the shortest dis-

tance between two defective dies, where one

defective die is in each defect cluster. If Si and

Sj are two defect clusters, the distance between

them is

where d(a, b) denotes the Hamming distance

between defective dies a and b.

Suppose that the wafer contains N defective

dies at the initial state and each forms an indi-

vidual cluster. We merge any two clusters

together if the distance between them is less

than two. The merging process proceeds

sequentially until the distance between the

closest neighbors of different clusters surpass-

es one.

Building linked lists
After applying the nearest-neighbor algo-

rithm, the algorithm constructs linked lists to

represent members of different defect clusters

on the wafer. This list consists of three fields:

� x-die, which denotes the matrix row index

of the defective die;

� y-die, representing the matrix column index;

and

� next-die, which points to the next element

in the linked list.

The algorithm forms the list by linking up all the

dies in a cluster. Each linked list represents one

cluster, and the list’s length equals the count of

the cluster’s defective dies. We pick up a defec-

tive die in the linked list and use the first and

second fields of the die—x- and y-die—to com-

pute the distances between two clusters where

the two closest dies in each cluster are chosen.

In addition, we can link any two clusters togeth-

er by setting the next die field of the last defec-

tive die of one list to point to the first defective

die of the other. This data provides test engi-

neers with information they need either to back

trace or to find out what could have caused the

defect clusters.

Defective-die marking
Some defective dies in the defect clusters

can still pass the electrical test (wafer probe).

For this reason, we propose going through all

the elements in the linked lists and marking

their eight-adjacent neighbors as defective dies

even if these neighbors pass the electrical test.10

Figure 2 clarifies the meaning of eight-adjacent;

the entry denoted by 15 in Figure 2 connects to

all of its eight neighbors.

The last step marks an isolated interior die

as a defective die. Then the tool generates an

output file for the next processing stage.
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Experimental results
Figures 3a, 4a, and 5a illustrate three original

sample map files from the hundreds in the

experiment. Although a person can easily rec-

ognize defect clusters on these wafers, support

testers cannot identify these defect clusters with-

out efficient software. Applying the median fil-

ter yields the binary matrices in Figures 3b, 4b,

and 5b. Finally, the tool marks the eight-adja-

cent neighbors and the isolated interior dies as

defective. Figures 3c, 4c, and 5c show the results

of this process. This method recognizes bad and

suspect dies and also labels dies located in

flawed areas. Nevertheless, the median filter’s

limitations imply that it cannot recognize defect

clusters where the probe detects fewer than five

failed dies.

Figure 6 shows a typical result for our tool

when applied to a wafer sample with no clus-

tered defects. The tool treats a cluster as noise

when it is too small, as Figure 6b shows.

Therefore, this approach does not mistake iso-

lated defective dies for defect clusters.

Besides this experiment, Philips Semicon-

ductor performed a series of burn-in tests,

which screen out early-lifetime-failures-under-

use conditions. The burn-in tests did not report

failures caused by clustered defects.

OUR TOOL SCREENS up to 45,000 wafers per

month for Philips, saving at least $100,000 in

operating costs, including manual testing

expenses. Test results verify that  the tool

detects all the defect clusters.

Subsequent research will incorporate intel-

ligent tools such as neural networks, fuzzy

logic, and genetic algorithms to recognize scat-

tered defective dies and defect clusters of fewer

than five failed dies. �
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