IEEE TRANSACTIONS ON VERY LARGE SCALE INTEGRATION (VLSI) SYSTEMS, VOL. 12, NO. 9, SEPTEMBER 2004 895

A 13-Bit Resolution ROM-Less Direct Digital
Frequency Synthesizer Based on a
Trigonometric Quadruple Angle Formula

Chua-Chin Wang, Member, IEEE, Yih-Long Tseng, Hsien-Chih She, Chih-Chen Li, and Ron Hu

Abstract—A ROM-less direct digital frequency synthesizer
employing trigonometric quadruple angle formula is present in
this paper. The worse case spectral purity is better than —130 dBc.
The amplitude resolution is up to 13 bits, while the phase resolu-
tion is 12 bits. Neither any scaling table nor error correction tables
are required. The maximum error is mathematically analyzed.
The word length of each multiplier is carefully selected in the
digital implementation such that the error range is circuamscribed
and the resolution is preserved.

Index Terms—Direct digital frequency synthesizer (DDFS), fre-
quency synthesizer, ROM-less.

1. INTRODUCTION

VER since the low-cost RF CMOS technology became

the challenger of its conventional discrete counterpart, the
spectral quality of frequency synthesizers in a single-chip so-
lution has been demanded to possess better purity. Direct dig-
ital frequency synthesizers (DDFSs) are very much preferred
in some modern communication systems owing to their advan-
tages over phased-locked loop (PLL)-based solutions, e.g., fast
settling time, sub-Hertz frequency resolution, continuous-phase
frequency switching and low phase noise [1].

A conventional DDFS usually consists of a phase accumu-
lator, a sine—cosine generator, a digital-to-analog converter
(DAC), and a low-pass filter (LPF), as shown in Fig. 1. The
sine—cosine generator is a look-up table in such a ROM-based
DDEFS. By contrast, the sine—cosine value is real-timely com-
puted in a ROM-less DDFS as shown in Fig. 2. f.,1 decides
the accumulating step in the phase accumulator. f.p is the
operation frequency of the DDFS. sin 6/ cos 6 is the output of
the DDFS. The change of the output frequency is controlled by
tuning f.;). Each phase accumulating interval is decided by
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Fig. 2. Conventional architecture of the ROM-less DDFSs.
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The bottleneck of the DDFS method is the spurious noise
caused by amplitude quantization error, phase truncation, and
DAC nonlinearities. Many prior works were proposed to resolve
above problems, including ROM-based lookup tables [1]-[4],
[7] or scaling and error correction tables [5], [6]. All of the
ROM-based solutions suffered from ROMs intrinsic drawbacks
which are slow speed, large area, and high power consumption.
Sodagar et al. proposed a ROM-less DDFS by using second-
order parabolic approximation [5], [6]. However, the amplitude
resolution of Sodagar’s approach is limited by the second-order
parabolic approximation error. Caro et al. proposed a ROM-less
DDEFS by using polynomial interpolation technique [8], but the
resolution is also limited by the approximation error. In this
paper, we propose a novel ROM-less DDFS architecture, which
utilizes 12-bit trigonometric 46 formula and finally attains a
13-bit amplitude resolution.

II. 46 APPROXIMATION

A new idea to carry out the ROM-less DDFS is to utilize the
trigonometric quadruple angle formula such that the irregularity
of the scaling and error correction difficulties in [5] will be elim-
inated. In addition, the upper bound of the error range can be
analytically solved.
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Fig. 3. Comparison of cosine and (5).

A. Trigonometric First-Order 40 Approximation

The double angle equality is well known as
cos20 = 2cos? —1=1— 2sin? 4. )

Equation (2) can be rearranged as the following equality if §
is replaced with 26.

cosdf =2cos? 20 — 1 3)
=1 - 8sin? (1 —sin? ). 4)

Since the range of 46 is limited in [0, /2] according to [1],
the range of 6 is [0, 7 /8]. Thus, sin § = 6. Equation (4) becomes

cosdf ~1—860%(1—6%), 0<hH<=. 5)

C |

Fig. 3 shows the comparison of the true cosine function and
(5). Notably, the maximum amount of error occurs at 90°. In
order to minimize the phase quantization error and the ampli-
tude approximation error, the upper bound must be chosen to be
smaller than and close to 7 /8 & 0.3927. This bound should also
be easily converted into a digital representation which makes
the physical implementation more feasible. The simulink of
MATLAB is employed to find such a proper bound which meets
the requirement of at least 12-bit output amplitude resolution.
The simulation results suggest a nice selection at 3135/8192
with a phase quantization error < 2.4 x 107% = 1/2!2,
Hence, we redefine our first-order approximation method,
called TAl(z) (first-order trigonometric approximation), as
follows:

3135

TAl(z) =1 —82*(1 —2?), 0<z< 103"

IN

x (6)

Fig. 4 illustrates the actual cosine function and TA1(x), while
the difference of these two functions, which is TA1(x) — cosine,
is given in Fig. 5. The maximum error attained graphically is
13 x10~2 which is smaller than 15.625 x 102 = 1/2°. It in-
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Fig. 4. Comparison of cosine and TA1(x).
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Fig. 5. TA1(x) — cosine.

dicates that the first-order approximation has at least 6-bit reso-
lution. Fig. 6 produced by MATLAB simulation shows that the
worst case spurious is —84 dBc by using the TA1(x) approxi-
mation solely without any error correction at all.

Since the error function err(z) = TA1(z) — cosf is a com-
plex function to be implemented digitally, we propose to use a
polynomial function to fit the error function. The steps are sum-
marized as follows.

1) Keep dividing TA1(z)(1 — TA1(z)) by 2 until the max-
imum of TA1(z)(1 — TAl(z)) is close to the maximum
of err(x).

2) A scaling factor K is chosen to further reduce the error
between TA1(x)(1 — TA1(x)) and err(z). The K must
be digitally representable. Besides, the final error must be
less than 2.4 x 10~% = 1/2!2 to ensure the resolution.
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Fig. 7. Optimized err1(z).

The optimization procedure is carried out by simulink of
MATLAB. The final optimized error function becomes as
follows:

errl(z) = K - (0.5)*TAL(z) - (1 — TAL(z))
~TAl(z) — cosd @)

where K = (0.84375)10 = (0.11011)5, 0< 6 < /2, and
0 <z < 3135/8192. Fig. 7 illustrates the optimally tuned
errl(z) which is very close to the err(z) function, i.e.,
TAl(z) — cos .

B. Second-Order Approximation

A simple thought to further reduce the amount of error be-
tween the cosine function and the approximation equation is
to utilize a second-order difference method, which is given as
follows:

3135
TA2(z) = TAl(z) — errl(z), < .

05 ®)

0<z<
8192
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Fig. 8. TA2(x) — cosine.
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Fig. 9. Graphical solutions for maximum error in err2(x).

Fig. 8 shows (TA2(x) — cosine) graphically. We attain the max-
imal amount of error from the figure is 0.8 x 107% < 1.22 x
10~* = 1/2'3. Hence, we conclude that the output resolution of
our proposed method is guaranteed to be 13 bits, which is more
accurate than any prior work. In other words, a trigonometric
46 approximation with error correction for sinusoidal output is
attained.

C. Analytic Solutions

The difference between TA2 and cosine function is repre-
sented as err2(z) as follows:

err2(z) = TA2(x) — cos 6
3135 s

where 0 < z < —— 0§9§2 ©)]
)

= 8192’
TA2(z) =TAl(z) — A - TAl(z)(1 — TAl(z)
where A = K - (0.5)* = 0.84375 - (0.5)* (10)

TAL(z) =1 — 8z2(1 — 2?). (11)
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Fig. 11. Verilog simulation results [Note: “MSB” is the sign bit of TA2(x)].

By substituting (10) and (11) into (9), we obtain the entire
err2(x). Then, we take the first order derivative of err2(z) and
solve the solution given that err2’(z) = 0 to attain the following:

err2’ (r) =TA2' (z) — (cosf) =0
0 =(322°—16z)(16 Az* —16Az> + A+ 1) — (cos f)’

0 =(322% — 16z)(16Az* — 1642> + A+ 1)
81927 81927
xX.
6270

where 0 = (12)

sin 6,

By graphically solving the two terms in (12) as shown in
Fig. 9, there are two intersections between the two curves
where the solid line denotes the first term, and the dash line is
the second term. The locations of the two intersections exactly
match the maximum and minimum of the curve in Fig. §,
respectively. This phenomenon verifies that our method indeed
provides a high resolution result.

D. System Implementation

We propose our architecture basing upon the proposed 46 ap-
proximation method in Fig. 10. f., decides the accumulating

step of phase accumulator and controls the DDFS ouput fre-
quency. TA1 approximation calculates TA1(z) while error ap-
proximation calculates errl(x). TA2(z) is generated by sub-
tracting errl(z) from TA1(z). TA2(x) is the digital output of
the proposed DDFS while fpprs is the analog output.

III. SIMULATION AND SYSTEM IMPLEMENTATION

A. System-Level Simulation

Modelsim of Mentor and MATLAB of Mathworks are the
S/W tools to proceed the system-level simulations. The steps
that we adopted are summarized as follows.

1) The design in Fig. 10 is coded by Verilog which is then
simulated by Modelsim. The decimal output data in a 12-bit
format are collected. Fig. 11 shows the result of this part of
work.
2) The collected data are fed into MATLAB. The fast Fourier
transform (FFT) command is executed to attain the spectrum.
Fig. 12 illustrates the spurious performance of the proposed
method is as high as —130 dBc, which is far better than any prior
work. Table I summarizes the performance of the proposed work
and prior methods.
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TABLE 1
PERFORMANCE COMPARISON
[1] [2] [6] [7] [8] [9] ours
resolution (bit) 11 10 10 12 11 9 13
spurious (dBc) -55 -55 -62.8 -90.3 -60 -60 -130
process GaAs GaAs | 0.6 ym | 1.25 pm | 035 gm | 0.8 um | 0.35 pum
HBT HBT CMOS CMOS CMOS CMOS CMOS
power (mW) 5000 5800 780 950 15.52 9.5 13.53
@500 | @500 | @10 | @ 100 @ 83 @30 | @100
MHz MHz MHz MHz MHz MHz MHz
area (mm?) 2.8 15.58 N/A 21.09 0.18 0.9 0.31
DAC Yes Yes No No No No No
ROM Yes Yes No Yes No Yes No
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Fig. 12.  Spurious performance of the proposed DDFS. oscilloscope (HP 54 616C). The system operation clock is up
to 100 MHz without any pipelining. The power consumption of
the DDFS chip and the DAC is 13.53 mW at 100-MHz system

=] clock. With high-order LPF design, well-done noise suppres-
E sion, and clock synchronization, the spectrum performance will
e be expected to be much closer to the ideal performance.
-
-
E IV. CONCLUSION
N In this paper, we have presented a novel method utilizing the
trigonometric quadruple angle formula to reduce the spurious
tones of the DDFSs. The second-order approximation is used to
justify the capability of subsiding the noise power of the har-
Fig. 13. Die photo of the proposed DDFS.

B. Implementation and Testing

In order to verify the correctness and performance of the
proposed design, we use Taiwan Semiconductor Manufac-
turing Company (TSMC) 0.35-um 1P4M CMOS process to
implement the entire circuit. Fig. 13 shows the die photo of
the proposed design. The core area is 559 x 557 um?. Fig. 14
shows the test system. The logic analyzer—pattern generator
(HP 1660CP) sends clock and the control signals to the DDFS
chip, and monitors the DDFS digital outputs. The DAC (TI
DAC2904) converts the digital cosine outputs of the DDFS
chip into an analog sinusoidal signal which appears in the

monics. We physically fabricated the proposed DDFS which
shows a 13-bit digital amplitude resolution given a 100-MHz
system operation clock.
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