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Abstract This paper presents a novel NTSC video sync

separator (NSS) with a high-PSR (power supply rejection)

bias generation circuitry (BGC) which comprises a tem-

perature compensation circuitry. The proposed BGC

utilizes step-down regulators and a bandgap-based bias

with cascode current control. The clamping voltages

required for sync separation from an NTSC signal are

generated. Detailed PSR analysis of the proposed BGC is

also derived to circumscribe the clamping voltage varia-

tion. The proposed design is carried out using 0.35 lm

2P4M CMOS process. The measurement results verify that

the HSYNC, the composite signal, and the Line 21 caption

data can be separated successfully even if a 1 V noise is

coupled in the supply voltage. The measured power con-

sumption of the proposed chip is 31.92 mW.

Keywords NTSC � TV � Wireless network � Line 21 �
PSR

1 Introduction

Video decoders for NTSC TV products, e.g., [6], heavily

rely on precise clock sources, particularly HSYNC,

VSYNC, color burst, even/odd field, and back porch [3],

[5]. However, these clock sources built in the TV-related

products, particularly the compact hand-held or mobile

TVs, will be drastically affected by the ambient tempera-

ture as well as the highly unreliable power supplies. Those

mentioned clock signals existing in the NTSC composite

signals might not be extracted correctly. On top of that, the

generated heat will be very likely to drift the clock edges if

there is no compensation mechanism. Severe damages are

possibly made, e.g., fuzzy image and ghost shadow prob-

lems. Lots of work have been done to develop design

methods of the NTSC sync separation circuitry. Most of the

product datasheets, e.g., [5], were focused on the func-

tionality of video signal processing. On the other hand,

most of the related prior works were focused on either the

bandgap designs [1, 4], or simple clock generations [6, 9,

10]. A fact which has been long ignored is that the hostile

environment jeopardizes the clock locking and the voltage

clamping of a video decoder [11]. Besides, the peak-to-

peak amplitude of the received NTSC signals, called Vpp,

will vary drastically. A temperature-insensitive bias gen-

eration circuitry, thus, is required to provide stable

reference voltages for clock tracking, data slicing, and

noise rejection. Hence, we present an NTSC sync separator
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with a robust temperature-insensitive bias with high PSR

(power supply rejection) comprising regulators and a

reference voltage generator to resolve the mentioned

problems. Moreover, a system clock is also generated for

the following DSP (digital signal processing) core. The

caption data carried in the Line 21 of the NTSC signal is

also separated by the proposed design.

2 Robust NSTC sync separator

Although Electronic Industries Alliance (EIA) has

announced that the Vpp of the NTSC signal is set to 140

IREs [3], the amplitude of Vpp might still be affected

seriously in hostile environments [5]. Besides, the power

supply voltage is likely to be an unreliable source, partic-

ularly in those hand-held TV sets. However, several

clamping voltages are needed to extract the clock infor-

mation in the received NTSC signal such that the peak

white, black level, clip level, and sync tips can be correctly

extracted and separated. The architecture of the proposed

sync separator is shown in Fig. 1. The bias voltages gen-

erated by the High-PSR Bias are fed to OSC as well as

Sync Generator. OSC is in charge of generating a stable

clock, which is set to 12.0 MHz in this work, to the fol-

lowing DSP core. On the other hand, the digital to analog

converter (DAC) converts digital signals from the DSP

core into a voltage which is monitored by auto-gain control

(AGC) to dynamically adjust threshold voltages required in

the Clamper block.

2.1 High PSR bias generator

The performance of the entire NSS highly depends upon the

sensitivity of the bias, i.e., High-PSR Bias in Fig. 1. The

proposed bias circuit comprising two cascaded regulators,

and a bandgap bias (BB) with high PSR, is proposed to

resolve the difficulty of generating the required clamping

voltages.

The temperature independent bias generated by the BB,

called Vref, is fed into the plus input of the OP-AMP in

Regulator 1 as well as the minus input of the OP-AMP in

Regulator 2. Meanwhile, the BB also supplies a pair of bias

voltages, VC1, VC2, to control the gate drives of the cascode

pair in Regulator 1 which in turn stabilizes the source

current (tail current) of the built-in OP-AMP (AOP2) in

Regulator 1, as shown in Fig. 2 and Fig. 4.

2.2 High PSR bandgap

The bandgap reference, i.e., BB, is shown in Fig. 3.

Notably, the cascode configuration comprising PM31,

PM32, PM33, PM34, PM35, and PM36, and the feedback

loop consisting of OP-AMP AOP1 and NM31 are employed

to resist the noise coupled with the power supply, VDD.

The output impedance from Vref looking into the drain of

PM34 will be increased to around gm r2
o at the sacrifice of

the ‘‘headroom’’ of the output swing. However, since the

the circuitry is aimed at the clamping voltage generation
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Fig. 1 Architecture of the proposed NTSC sync separator
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which is usually below 2.0 V, it will not cause any prob-

lem. Meanwhile, AOP1 monitors the voltage difference

between node V31 and V32 to control the current via NM31,

which in turn stabilizes the voltage of the PMOS cascode

configuration, VC1 and VC2.

Assume A1 and A2 are the area of the BJTs, Q1 and Q2,

respectively. The expected Vref is analyzed as follows.

Vref ¼ I2 � R2 þ VEB2 ¼ VEB2 þ L� VT � lnðKÞ; ð1Þ

where K is the BJT area ratio, i.e., A1/A2, the ratio of R2/R1

is assumed to be L. Hence, the bandgap reference can be

pre-determined by tuning L and K.

2.2.1 PSR analysis

Since the NM31 acts as a current subtractor to control the

gate drives of PM32, PM34, and PM36, we simply analyze

the voltages applied to the plus and minus inputs of the

OP-AMP AOP1 to find out the PSR which is defined as: V32 ¼
1

gmQ2

R2þ 1
gmQ2
þgmpr2

op
� VDD; V31 ¼

R1þ 1
gmQ1

R1þ 1
gmQ1
þgmpr2

op
� VDD; where

gmQ1
and gmQ2

denotes the transconductance of Q1 and Q2,

respectively, gmp and rop represents the transconductance

and the output impedance of the PMOS transistors in the

cascode configuration. Thus, the PSR is found to be,

PSR � VDD

V32 � V31

� 1

AOP1

� 1
R1

gmpr2
op

� 1

AOP1

ð2Þ

The AOP1 is supposed to be an ideally large gain to avoid

other side effects. Hence, we can reduce R1

gmpr2
op

to increase

the PSR by a small R1 and a cascode configuration.

2.2.2 Cascaded regulators

One of the most efficient approaches to avoid the effects of

unstable power supplies is to employ step-down bandgap-

referenced voltage regulators to supply a temperature

independent reference voltage, Vref, to the rest of the cir-

cuitry [10]. Since the received Vpp might be as low as 2.0

V, the generated Vref should be no higher than this lower

bound. Referring to Fig. 4, Regulator 1 is composed of

PM41, PM42, NM41, R0, RL, and OP-AMP AOP2. AOP2 is

shown in Fig. 5, where the VC1 and VC2 are supplied by the

bandgap reference.

Notably, PM41 and PM42 are cascoded to provide a

high output impedance and two stable reference voltages,

VP41, VP42 to the following OPA Bias Generator (OBG).

With large oIo1

oVo1
(Vo1 is the voltage at NODE A.), the loading

effect at NODE A can be reduced. Assume Rout1 is the

output impedance from OBG looking into NODE A.

gmPM41 and gmPM41 are the transconductances of PM41 and

NM41, respectively. Since PM41 and PM42 are sized

equally, the transconductance of PM42 is equal to gmPM41
:

The relationship between oIo1

oVo1
and Rout1 can be derived as:

oIo1

oVo1
¼ 1

Rout1
: NM41 has become a Common Source amplifier

with source degeneration in the small-signal AC model.

Besides, the output impedance of AOP2, roA2, is relatively

Vref

VP41

VP42

R0 RL
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Vop1

Vop2

PM42
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VC1 ,VC2

Fig. 4 The circuitry of Regulator 1
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Fig. 5 The circuitry of AOP2
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small compared to the gate impedance of NM41. We then

can easily derive the impedance looking A node from OBG

as Rout1 � 2
gmPM41

k 1þ gmNM41
ðRo k RLÞð Þ � roNM41

� 2
gmPM41

k
gmNM41

� roNM41
� ðRo k RLÞð Þ � 2

gmPM41

; where roNM41
is the

output impedance of NM41.

Because of small Rout1, oIo1

oVo1
will be large enough to

ignore the loading effect such that stable bias voltages can

be achieved. Similar results can be derived at NODE B.

Figure 6 shows the schematic of OBG. The regulated

voltages, VP41 and VP42, are translated to another pair of

voltage levels, Vop1 and Vop2. The output bias of OBG, Vop1

and Vop2, are used to control the tail current of the differ-

ential stage of AOP3. Regulator 2 comprising AOP3, PM61,

and a resistor string, is shown in Fig. 7. Notably, AOP3 is

identical to AOP2 except that the bias voltages, VC1 and VC2,

in AOP2 are replaced with Vop1 and Vop2, respectively.

2.3 Clamper and timing

The generated Vburst, Vsync, and Vbottom, are fed into the

Clamper shown in Fig. 8 to serve as the slicing thresholds.

The NTSC signal will be coupled to the clamper via a LPF

(low pass filter) with a 600 KHz stopband. By contrast, if

the color burst signal is also taken into account, the LPF

can be switched to a 3.58 MHz stopband. The external

digital control signals, DI3, …, DI6, cooperated with the

output of AOP6, i.e., DI7, to control the switches in the

clamper, as shown in Fig. 8. The truth table of the digital

control block is given in Table 1.

The output voltage of the digital-to-analog converter

(DAC) is coupled to the positive input of AOP5 where the

negative input is the VLPF, which is the output of the fil-

tered NTSC signal. The output of AOP5 is fed into the gate

drive of NM101 in Fig. 9 which is the schematic of the
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Fig. 6 The schematic of OBG
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Table 1 Truth table of the digital control block

Input

DI3 DI4 DI5 DI6 DI7

0 0 X X X

0 1 X X X

1 0 X X X

1 1 1 0 1

Output

SW00 SW01 SW02 SW03 Clamper DO1 DO2

ON OFF ON OFF ON 0 1

ON OFF ON OFF ON 0 1

OFF X OFF ON OFF 1 0

ON OFF OFF OFF ON 0 1
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Clamper. Namely, it is the auto gain control (AGC) pin to

dynamically adjust the threshold voltage level. In short, the

operation of the AGC loop comprising Clamper and AOP5

is summarized as follows.

VLPF")VAGC#)
VDAC ¼ VLPF; when SW00 is turned on)VLPF stable:

Thus, the DAC output voltage serves as a dynamically

adjustable level to determine and clamp the NTSC video

signal.

2.4 Sync generator

The proposed sync separator also generates two critical

digital signals which will be utilized in any following DSP

core.

HSYNC: HSYNC is generated at the output of AOP6 by

comparing the Vfd which is a DC level provided by

Clamper and the output of AOP4 which is a threshold

voltage level.

Vall data: This signal is present at the output of AOP7

which comprises all of the edges of the original NTSC
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Fig. 12 The measured Vcomposite and the corresponding input NTSC

signal

Fig. 13 The measured Valldata and the 0 input NTSC signal

Fig. 11 The measured HSYNC and the corresponding input NTSC

signal
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signal. When EI2 is turned on, the clamped NTSC signals

are sampled. On the other hand, the clamped NTSC signals

are hold when EI2 is turned off. Thus, the comparing ref-

erence voltage level needed on the negative input of AOP7

is obtained by means of the hold operation.

Vcomposite: By the combination of switches EI1 and EI2,

AOP8 outputs a waveform composed of VSYNC and

HSYNC which are both required in the later DSP opera-

tions. Because of the different line delay caused by EI1 and

EI2, the clamped NTSC signal has the cross voltage drops

on the sync tip between positive and negative inputs of

AOP8. Consequently, the composite sync signal could be

generated by voltage comparison.

3 Implementation and measurement

Taiwan Semiconductor Manufacturing Company (TSMC)

0.35 lm 2P4M CMOS process was adopted to carry out the

proposed design. According to Eq. 1, the following equality

for a temperature-independent bandgap reference is derived.

oVref

oT
¼ L� lnðKÞ � oVT

oT
þ VEB2

oT
¼ 0 ð3Þ

By substituting all of the parameters in the above

equation and setting L = 10, K = 8, R1 = 140 X, the Vref is

found to be approximately 1.15 V. Then, we select the

most common clamping voltages for the NTSC signal

given a 3.3 V power supply: Vburst = 3.05 V, Vsync = 1.78

V, and Vbottom = 1.57 V, to design the entire bias circuitry.

The simulation and measurement results show that the

proposed BGC, which does not require any compensation

capacitor, possesses 34 and 30 dB PSR up to 1 MHz,

respectively. By contrast, the prior work, [2], employed a

capacitor of 22.45 pF to increase the frequency up to

1 MHz where a 37 dB PSR is provided by simulation only.

Figure 10 shows the die photo of the proposed design.

Figure 11 shows the separated HSYNC signal and the

corresponding input NTSC signal measured on silicon

when a noise with a magnitude of 1 V is present in the

power supplies. Figure 12 reveals the signal Vcomposite,

which is the composite sync signal. The NTSC signal

shown in Fig. 12 is the vertical blanking interval (VBI) of

the NTSC video signal. The separated Line 21 data is

shown in Fig. 13. he power consumption of the proposed

design is measured to be 31.92 mW. Table 2 lists the

specifications of the proposed design compared with sev-

eral prior works.

4 Conclusion

We have proposed a temperature-insensitive high-PSR bias

generation circuitry for the sync separation of NTSC sig-

nals in this paper. The cascode configuration as well as the

cascaded regulators stabilize the clamping levels to cope

with hostile receiving environments. Besides the physical

implementation, the detailed PSR analysis of the proposed

design is also revealed to illustrate our methodology.

According to the measurement results, all of the required

sync signals are successfully extracted for any later digital

signal processing even if a large noise is coupled in the

supply voltage.
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Performance with

supply noise

Functional worked with 1 V

supply noise

N/A N/A 28 dB power supply

immuity

284 Analog Integr Circ Sig Process (2009) 61:279–286

123



NSC94-2213-E-110-022. Furthermore, the authors would like to

express their deepest gratefulness to Chip Implementation Center

(CIC) of National Applied Research Laboratories (NAPL), Taiwan,

for their thoughtful chip fabrication service. The authors also like to

thank ‘‘Aim for Top University Plan’’ project of NSYSU and Ministry

of Education, Taiwan, for partially supporting the research.

References

1. Buck, A. E., McDonald, C. L., Lewis, S. H., & Viswanathan, T.

R. (2002, January). A CMOS bandgap 0 without resistors. IEEE
Journal of Solid-State Circuits, 37(1), 81–83.

2. Giustolisi, G. & Palumbo, G. (2001, May). Detailed frequency

analysis of power supply rejection in Brokaw bandgap. The 2001
IEEE international symposium on circuits and systems (Vol. 1,

pp. 731–734).

3. Jack, K. (2001). Video demystified. Reading: published by LLH

Technology Publishing.

4. Jun, C., & Guican, C. (2001, October). A CMOS bandgap ref-

erence circuit. 2001 4th International Conference on ASIC
(pp. 271–273).

5. National Semiconductor. (2003, June). LM1881 video sync sep-

arator, Data Sheet.

6. Ohta M., Kohiyama, K., Tahara, N., Sugihara, K., Asami, F.,

Kobayashi, O., Hino, Y., & Akiba, T. (1990, December). A

single-chip CMOS analog/digital mixed NTSC decoder. IEEE
Journal of Solid-State Circuits, 25(6), 1464–1469.

7. Redman-White, W., Duffee, R., Bramwell, S., Rijns, H., James, S.,

Tijou, J., & van der Weide, G. (1998). A robust analog interface

system for submicron CMOS video DSP. IEEE Journal Solid-State
Circuits, 33(7), 1076–1081.

8. ROHM CO., LTD, SYNC separator IC with AFC. Data Sheet:

BA7071F.

9. Routama, J., Koli, K. & Halonen, K. (1998, May). A novel ring-

oscillator with a very small process and temperature variation.

1998 International symposium on circuits and systems (ISCAS’98)
(Vol. 1, pp. 181–184).

10. Sundaresan, K., Brouse, K. C., U-Yen, K., Ayazi, F., & Allen,

P. E. (2003, May). A 7-MHz process, temperature and supply

compensated clock oscillator in 0.25 lm CMOS. 2003 Interna-
tional symposium on circuits and systems (ISCAS’03) (Vol. 1, pp.

693–696).

11. Techwell, Inc. (2000, March 30). Enhanced NTSC/PAL/SECAM

Video Decoder, Data Sheet: TW99.

Chua-Chin Wang was born in

Taiwan in 1962. He received the

B.S. degree in Electrical Engi-

neering from National Taiwan

University in 1984, and the M.S.

and Ph.D. degree in Electrical

Engineering from State Univer-

sity of New York in Stony

Brook in 1988 and 1992,

respectively. He then joined the

Department of Electrical Engi-

neering, National Sun Yat-Sen

University, Taiwan, and became

a full professor since 1998. His

recent research interests include

mixed-signal circuit design, low-power and high-speed circuit design,

communication interfacing circuitry, and bio-chips. He founded SOC

group in Department of Electrical Engineering, National Sun Yat-Sen

University during 2005. He is currently also serving as the Director of

Engineering Technology Research and Promotion Center (ETRPC),

National Sun Yat-Sen University. He is the Chair of IEEE Circuits

and Systems Society (CASS), Tainan Chapter. He is also the founding

Chair of IEEE Solid-State Circuits Society (SSCS), Tainan Chapter,

and the founding Councilor of IEEE NSYSU Student Branch. He is

also a member of the IEEE CASS Multimedia Systems Applications

(MSA), VLSI Systems and Applications (VSA), Nanoelectronics and

Giga-scale Systems (NG), and Biomedical Circuits and Systems

(BioCAS) Technical Committees. He is a senior member of IEEE

since 2004. Currently he is also serving as the Associate Editor of

International Journal of VLSI Design, and IEICE Trans. on Elec-

tronics. He is also a Guest Editor of International Journal of Electrical

Engineering. In 2007, he was elected to be IEEE CASS Nanoelec-

tronics and Giga-scale Systems (NG) Technical Committee Chair to

serve a 2-year term from 2008. In the same year, he was elected to be

the DLP (Distinguished Lecturer Program) speaker of IEEE Circuits

and Systems Society. He was the General Chair of 2007 VLSI/CAD

Symposium.

Chia-Hao Hsu was born in

Taiwan in 1981. He received the

B.S. and M.S. degree in

Department of Electronic Engi-

neering in Southern Taiwan

University in 2005 and 2007,

respectively. He is currently

working toward the Ph.D. in the

Department of Electrical Engi-

neering, National Sun Yat-Sen

University, Kaohsiung, Taiwan.

His recent research interests

include VLSI design and mixed-

signal integrated circuit design.

Chi-Chun Huang was born in

Taiwan in 1980. He received his

B.S. degree in Department of

Electrical Engineering in

National Cheng Kung Univer-

sity in 2003 and the M.S. in

Department of Electrical Engi-

neering in National Sun Yat-Sen

University in 2005. He is cur-

rently working toward the Ph.D.

in Department of Electrical

Engineering National Sun Yat-

Sen University, Kaohsiung,

Taiwan. His recent research

interests include VLSI design,

mixed signal circuits, and biomedical signal processing.

Tzung-Je Lee was born in

Taiwan in 1979. He received the

B.S., M.S., and Ph.D. degrees in

Electrical Engineering from

National Sun Yat-Sen Univer-

sity, Taiwan, in 2002, 2004, and

2008, respectively. His current

research interests are VLSI

design, mixed-signal circuit

design, and implantable bio-

chips.

Analog Integr Circ Sig Process (2009) 61:279–286 285

123



Chien-Chih Hung received the

B.S. and M.S. degrees in Elec-

trical Engineering from National

Sun Yat-Sen University, Taiwan,

in 2003 and 2005, respectively.

His current research interests are

VLSI design, mixed-signal cir-

cuit design, and communication

circuits.

Ya-Hsin Hsueh was born in

Taiwan in 1976. She received the

B.S., M.S. and Ph.D degree in

Electrical Engineering from

National Sun Yat-Sen University

in 1998, 2000, and 2004,

respectively. She then joined

the Department of Electronic

Engineering, National Yunlin

University of Science and Tech-

nology, Taiwan, as an assistant

professor since 2005. Her recent

research interests include mixed-

signal circuit design, digital cir-

cuit design, FPGA system,

and bio-chips.

Ron Hu was born in Tainan,

Taiwan, in 1962. He received

the B.S. degree from National

Taiwan Institute of Technolo-

gies, Taipei, Taiwan, in 1987,

the M.S. degree from Utah State

University, Logan, in 1990, and

the Ph.D. degree from the State

University of New York, Stone

Brook, 1994, all in electrical

engineering. He jointed Holtek

Semiconductor Inc., Taiwan, in

1994. He became General

Manager of Asuka Semicon-

ductor, Inc., Hsin-Chu, Taiwan, in 2001. His research interests

include consumer product circuit design and wireless communication.

286 Analog Integr Circ Sig Process (2009) 61:279–286

123


	High-PSR sync separator for TV signals
	Abstract
	Introduction
	Robust NSTC sync separator
	High PSR bias generator
	High PSR bandgap
	PSR analysis
	Cascaded regulators

	Clamper and timing
	Sync generator

	Implementation and measurement
	Conclusion
	Acknowledgements
	References



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (None)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Error
  /CompatibilityLevel 1.3
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJDFFile false
  /CreateJobTicket false
  /DefaultRenderingIntent /Perceptual
  /DetectBlends true
  /ColorConversionStrategy /sRGB
  /DoThumbnails true
  /EmbedAllFonts true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /SyntheticBoldness 1.00
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 524288
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveEPSInfo true
  /PreserveHalftoneInfo false
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts false
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 150
  /ColorImageDepth -1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages false
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /ColorImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasGrayImages false
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 150
  /GrayImageDepth -1
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /GrayImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasMonoImages false
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 600
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputCondition ()
  /PDFXRegistryName (http://www.color.org?)
  /PDFXTrapped /False

  /Description <<
    /ENU <>
    /DEU <>
  >>
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [5952.756 8418.897]
>> setpagedevice


