
Multifunctional In-Memory
Computation Architecture Using
Single-Ended Disturb-Free 6T SRAM

Chua-Chin Wang, Nanang Sulistiyanto, Tsung-Yi Tsai
and Yu-Hsuan Chen

Abstract This paper presents an In-Memory Computation (IMC) architecture
using Full Swing Gate Diffusion Input (FS-GDI) in a single-ended disturb-free 6T
SRAM. Not only are basic boolean functions (AND, NAND, OR, NOR, XOR2,
XOR3, XNOR2) fully realized, a Ripple-Carry Adder (RCA) is also realized such
that IMC is feasible without ALU (Arithmetic Logic Unit) or CPU. FS-GDI
reserves the benefits of the original GDI, and further resolves the reduced voltage
swing issue, but it leads to speed degradation and large static power. Therefore, by
using in-memory computing technique, the well-known von-Neumann bottleneck
will be mitigated as well as energy efficiency is enhanced.
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1 Introduction

The pursuit of speed in computing system development has never been changed.
However, almost all computing architecture used for computation-intensive appli-
cations, such as Artificial Intelligence (AI), biological systems, and neural net-
works, are based on von-Neumann machines, which separates the storage units
(memory) with Arithmetic Logic Units (ALU for computation). Thus, despite the
advanced CMOS technology, it still runs into a well-known issue called von
Neumann bottleneck [1]. Due to the large amount of data flow between memory
and CPU and overhead limitations, many types of solutions have been developed,
including IMC [2–5]. The aim of IMC is to bypass von Neumann bottleneck and
realize computation in memory arrays directly and locally.
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SRAMs, usually as the core of CPU cache, consume a great portion of power.
With reference to [6], a 4T load-less SRAM has been proposed and implemented to
reduce the power consumption. However, the disturbance of the bit line during
read/write data has been pointed out to compromise Static Noise Margin (SNM) [7].
Therefore, a write-assist loop with multi-Vth transistors is presented to ensure the
disturb-free feature [8]. Nevertheless, when read/write operations are kept in a long
period, the leakage current will destroy the stored data, which needs to be resolved.

Gate Diffusion Input (GDI) technique [9] is a method to relieve two basic
problems of Pass Transistor Logic (PTL) circuit. One is the performance degra-
dation from Vth drop, and the other is high power dissipation from half-closed
PMOS transistor. Moreover, several boolean functions can easily be expressed by
only two transistors. For instance, FS-GDI was revealed to resolve voltage swing
hazards [10]. According to the demand mentioned above, a single-ended
disturb-free 6T SRAM with IMC architecture utilizing FS-GDI to carry out logic
circuit may be a good solution for AI system realizations.

2 SRAM Design with IMC

The proposed single-ended disturb-free 6T SRAM cell with the associated control
circuit is shown in Fig. 1. The 6T SRAM cell has been proved to attain the edge of
low power and small area. The Control circuit is in charge of generating all the
required control signals for the cell. Figure 2 shows an illustrative IMC architecture
composed of a 4 � 4 SRAM array, four pre-charged circuits, four MUXs, four
RCA unit, and forty-eight 2T switches. Notably, this work also demonstrates a 4-bit
Ripple-Carry Adder (RCA) and all the xes in this work (including figures) stand for
0, 1, 2, or 3. Detailed sub-circuits and data flow will be explained below.
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Fig. 1 A 6T SRAM cell with a control circuit. (x = 0, 1, 2, 3)
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2.1 6T SRAM Cell with Control Circuit

Data_inx in Fig. 1 is the input data to be stored in the cell. PreD is the pre-discharge
signal to reset BLBx (BLx). WLx will select which word line to be accessed, and
control MN201 to resist the potential disturbance from the bit lines. WA and WAB
assist the write operation. If the SRAM cell is realized by the prior 5T SRAM in [8]
and Qbxx is logic “1” in read operation, the leakage current will flow through Vleak
to Qxx after WA and WLx are switched on. The accumulation on Qxx will soon
destroy the data state. Therefore, adding MN204 as a foot switch will fortify the
data state on Qxx.

2.2 RCA Unit

RCA unit in Fig. 3 is composed of combinational circuits as well as simplified
FS-GDI circuits. Notably, NMOS and PMOS highlighted by grey scale are
neglected when one of the inputs are kept coupled to VDD or GND, respectively.
Table 1 tabulates detailed logic function in an RCA unit.
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Fig. 2 A 4 � 4 IMC architecture for demonstration
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2.3 In-Memory Computing Operation

The IMC operation of the proposed design employs the logic operation strategy
reported in [11]. Referring to Fig. 2, the pre-charge circuit will charge CBx,
CNORx, and CANDx to high level in the first half of every write cycle. Then 2T
switches [12], controlled by Sx and Cx signals (x = 0, 1, 2, 3), will store the digital
state in Qxx or Qbxx to CBx, CNORx, and CANDx accordingly. Firstly, only one
signal among S0 to S3 will be turned on to read Qxx. If Qxx is high, CBx is low.
Secondly, two signals among C0 to C3 will be on to carry out NOR function. If one
of the selected Qxx is high, CNORx will turn low. Thirdly, by the same procedure
as the previous one, two Cx signals will be on to execute the function of AND gate
of Qbxx. If both selected Qbxxes are low, CANDx is high. Overall logic function is
tabulated in Table 2. Therefore, input signals, CBx, CNORx, and CANDx, will
trigger RCA units to compute the summation and carry bit generation.

For the sake of clarity, we demonstrate X (0101) + Y (0110) = Sum (1011).
Logic transition waveforms are shown in Fig. 4. Figure 5 shows the data flow of
the 4-bit addition, which is a simplified version of Fig. 2. Notably, the stored data is
labeled in red. The data transition of cell blocks is labeled in orange (cell 00, 10, 20,
30, and 21), and the detailed description of the addition is listed below.
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Fig. 3 Combinational logic with simplified FS-GDI. (x = 0, 1, 2, 3)

Table 1 Boolean expressions in the RCA unit

CBx ¼ CIx XORx ¼ AB + ðA + B) ¼ ðA + B) � A + Bð Þ ¼ A� B

CANDx ¼ AB SUMx ¼ A� Bð Þ � CIx ¼ CIx � A� Bð ÞþCBx � A� Bð Þ
CNANDx ¼ AB COx ¼ A� Bð Þ � CIxþA � B
CNORx ¼ A + B

A, B Input bit; CI Carry in bit; CO Carry out bit
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Table 2 Logic function table of the RCA unit

S0/C0/C1 Q00 Q10 Qb00 Qb10 CBx CNORx CANDx

1/−/− 0 – – – 1 – –

1/−/− 1 – – – 0 – –

−/1/1 0 0 – – – 1 –

−/1/1 0 1 – – – 0 –

−/1/1 1 0 – – – 0 –

−/1/1 1 1 – – – 0 –

−/1/1 1 1 0 0 – – 1

−/1/1 1 0 0 1 – – 0

−/1/1 0 1 1 0 – – 0

−/1/1 0 0 1 1 – – 0
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Fig. 4 Detailed logic transitions of an addition
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(1) Enable signal PreC drives the pre-charge circuit to pull CB0, CNOR0, and
CAND0 up high (CI0 is low). WL0 is selected to be loaded with data. [0, 0]
of In sel[1:0] drives MUX to select Write in 0 as the input data. Q00 is then
pulled up high.

(2) Same step as (1). WL1 is then selected to be loaded with data. Q10 is low.
(3) Same step as previous (1) and (2). However, additional carry bit 0 needs to

be stored in Q20 to accomplish addition.
(4) PreC pulls high to disable charging, where C0, C1, and S2 are turned on

simultaneously to start calculations.
(5) NOR function: Q00 (1), Q10 (0), CNOR0 (0)
(6) AND function: Q00 (1), Q10 (0), CAND0 (0).
7) NOT function: Q20 (0), CB0 (1), CI0 (0).
(8) Addition of bit 0 is complete. SUM0 and CO0 are 1 and 0, respectively.
(9) WL3 is then selected as well as [1] of In sel[1:0] drives MUX to store SUM0

into Q30.
(10) WL2 is finally selected, where [0, 1] of In sel[1:0] enables MUX to reach

CO0 as the carry bit to be stored in Q21.
(11) PreC pulls CB1, CNOR1, and CAND1 up high in a short period of time to

prepare for the calculation of the next bit.
(12) Repeat steps, (4) to (11) until the calculation is complete.
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Fig. 5 Demonstration of the operation of the 4-bit ripple carry adder
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3 Simulation and Verification

The proposed work is carried out and simulated using UMC 0.18 µm CMOS
process. Figure 6 shows the all-PVT-corner simulation (5 Process corners, 3
Voltage variation levels, 3 Temperature) of this 4-bit ripple carry adder. The final
result shows that this IMC architecture successfully completes the addition for IMC
demand. Comparison with prior IMC SRAMs is tabulated in Table 3. Although we
use a legacy CMOS technology in our design, we still attain the least normalized
energy on both write and read operations. Most important of all, we are the only
ones to realize the addition in a single-ended 6T SRAM.

4 Conclusion

This work presents an IMC ripple carry adder architecture using FS-GDI in a novel
single-ended disturb-free 6T SRAM. Not only accumulation problems in original
5T SRAM are resolved, but a simple strategy using FS-GDI to realize the RCA
function is proved inside a memory unit.
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